Refinable and monotone maps revisited

被引:1
作者
Cichon, Daniel [1 ]
Krupski, Pawel [1 ]
Omijanowski, Krzysztof [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
graph; monotone map; refinable map; totally regular curve;
D O I
10.1016/j.topol.2007.09.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalizing results by J. Ford, J. W. Rogers, Jr. and H. Kato we prove that (1) a map f from a G-like continuum onto a graph G is refinable iff f is monotone; (2) a graph G is an arc or a simple closed curve iff every G-like continuum that contains no nonboundary indecomposable subcontinuum admits a monotone map onto G. We prove that if bonding maps in the inverse sequence of compact spaces are refinable then the projections of the inverse limit onto factor spaces are refinable. We use this fact to show that refinable maps do not preserve completely regular or totally regular continua. (c) 2007 Published by Elsevier B.V.
引用
收藏
页码:207 / 212
页数:6
相关论文
共 50 条
[1]   Nonwandering points of monotone local dendrite maps revisited [J].
Abdelli, Hafedh ;
Abouda, Haithem ;
Marzougui, Habib .
TOPOLOGY AND ITS APPLICATIONS, 2018, 250 :61-73
[2]   Uniformly refinable maps [J].
Macias, Sergio .
APPLIED GENERAL TOPOLOGY, 2023, 24 (01) :59-81
[3]   Preservation of properties of continua by refinable maps [J].
Grace, EE ;
Vought, EJ .
HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (01) :105-112
[4]   Dynamics of monotone maps on regular curves [J].
Daghar, Aymen ;
Marzougui, Habib .
TOPOLOGY AND ITS APPLICATIONS, 2023, 324
[5]   Monotone functions and maps [J].
Basu, Saugata ;
Gabrielov, Andrei ;
Vorobjov, Nicolai .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (01) :5-33
[6]   Monotone functions and maps [J].
Saugata Basu ;
Andrei Gabrielov ;
Nicolai Vorobjov .
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2013, 107 :5-33
[7]   Invariant Sets for Monotone Local Dendrite Maps [J].
Abdelli, Hafedh ;
Marzougui, Habib .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (09)
[8]   On Limit Sets of Monotone Maps on Regular Curves [J].
Daghar, Aymen ;
Marzougui, Habib .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)
[9]   Monotone maps, the likeness relation and G-structures [J].
Cichon, Daniel ;
Krupski, Pawel ;
Omiljanowski, Krzysztof .
TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (17-18) :2031-2040
[10]   On Limit Sets of Monotone Maps on Dendroids [J].
Makhrova, E. N. .
APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (02) :311-316