Geometric Phase of Time-Dependent Superconducting Qubit

被引:2
作者
Zeng, G. R. [1 ]
Jiang, Yanyan [2 ]
Chen, Z. Q. [3 ]
Yu, Yanxia [4 ]
机构
[1] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Peoples R China
[2] Anqing Teachers Coll, Dept Phys, Anqing 246011, Peoples R China
[3] Jinggangshan Univ, Coll Sci, Jian 343009, Jiangxi, Peoples R China
[4] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
关键词
Geometric phase; Solid-state qubit; Invariant operator; QUANTUM STATE; MIXED-STATE;
D O I
10.1007/s10773-014-2362-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Geometric phases are studied in terms of invariant operator for a time-dependent superconducting qubit. The results show that the geometric phase depends on the dipole interaction strength between the qubit and a microwave field of frequency and phase, which provides a clue to realize the geometric quantum computation in the experiments.
引用
收藏
页码:1617 / 1626
页数:10
相关论文
共 33 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   Differential geometry on SU(3) with applications to three state systems [J].
Byrd, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) :6125-6136
[3]   Markovian and non-Markovian effects on the geometric phase of a dissipative Josephson qubit [J].
Chen, Z. Q. ;
Guo, L. P. ;
Luo, F. F. .
EPL, 2011, 96 (04)
[4]   Controlling Decoherence from Fluctuating Magnetic Field [J].
Chen, Z. Q. ;
Guo, L. P. ;
Chen, Y. ;
Li, X. L. ;
Liu, G. Q. ;
Ji, Y. H. ;
Wang, Z. S. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (01) :18-24
[5]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[6]   Detection of geometric phases in superconducting nanocircuits [J].
Falci, G ;
Fazio, R ;
Palma, GM ;
Siewert, J ;
Vedral, V .
NATURE, 2000, 407 (6802) :355-358
[7]   Geometric Phase of Two-Level Mixed State and Bloch Sphere Structure [J].
Fu, Guolan ;
Liu, Xiaoshan ;
Wang, Z. S. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (09) :3132-3140
[8]   Geometric Population Inversion in Rabi Oscillation [J].
Liu, Dongyu ;
Chen, Z. Q. ;
Wang, Z. S. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (03) :497-505
[9]   Coupling superconducting qubits via a cavity bus [J].
Majer, J. ;
Chow, J. M. ;
Gambetta, J. M. ;
Koch, Jens ;
Johnson, B. R. ;
Schreier, J. A. ;
Frunzio, L. ;
Schuster, D. I. ;
Houck, A. A. ;
Wallraff, A. ;
Blais, A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2007, 449 (7161) :443-447
[10]   Non-Abelian Berry connections for quantum computation [J].
Pachos, J ;
Zanardi, P ;
Rasetti, M .
PHYSICAL REVIEW A, 2000, 61 (01) :4