Clay minerals derived nanostructured silicon with various morphology: Controlled synthesis, structural evolution, and enhanced lithium storage properties

被引:45
作者
Chen, Qingze [1 ,2 ]
Liu, Shaohong [3 ,4 ]
Zhu, Runliang [1 ]
Wu, Dingcai [3 ,4 ]
Fu, Haoyang [1 ,2 ]
Zhu, Jianxi [1 ]
He, Hongping [1 ,2 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Prov Key Lab Mineral Phys & Mat, CAS Key Lab Mineral & Metallogeny, Guangzhou 510640, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Sun Yat Sen Univ, PCFM Lab, Mat Sci Inst, Guangzhou, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, GDHPRC Lab, Sch Chem, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanostructured silicon; Clay minerals; Controlled synthesis; Structural evolution; Lithium-ion battery anodes; LI-ION; MESOPOROUS SILICON; SCALABLE SYNTHESIS; ANODE MATERIAL; CHEMICAL-REDUCTION; BUILDING-BLOCKS; ENERGY-STORAGE; SI ANODE; LOW-COST; NANOSHEETS;
D O I
10.1016/j.jpowsour.2018.10.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanostructuring is an effective strategy to enhance the structural and cycling stability of silicon anodes in lithium -ion batteries. However, a controllable and cost-effective method for synthesizing nanostructured silicon with various morphology is still a challenge. Herein, we synthesize zero-dimensional, two-dimensional, and three-dimensional silicon nanostructures directly using low-cost and abundant clay minerals as precursors without any pretreatment and templates. Our results show that the morphology and microstructure of the resulting nanostructured silicon strongly depend on the architectural features of clay minerals, i.e., zero-dimensional silicon from palygorskite, two-dimensional silicon from montmorillonite, and three-dimensional silicon from halloysite. The silicon nanostructures show large specific surface area (over 80 m(2) g(-1)) and hierarchical pore structure. As anodes in lithium-ion batteries, two-dimensional nanostructured silicon from montmorillonite exhibits the best electrochemical performance (i.e., 1369 mAh g(-1) at 1.0 A g(-1) with a capacity retention of 78% over 200 cycles). This work provides a universal guideline from clay minerals to various silicon nanostructures via an economical and scalable strategy, and reveals the fundamental structure-property relationship of different silicon nanostructures synthesized under the same condition, which would contribute to the large-scale production of high-performance and low-cost silicon-based anodes in lithium-ion batteries.
引用
收藏
页码:61 / 69
页数:9
相关论文
共 67 条
[21]   Rational design of MoS2@graphene nanocables: towards high performance electrode materials for Lithium ion batteries [J].
Kong, Debin ;
He, Haiyong ;
Song, Qi ;
Wang, Bin ;
Lv, Wei ;
Yang, Quan-Hong ;
Zhi, Linjie .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (10) :3320-3325
[22]   An in situ X-ray diffraction study of the reaction of Li with crystalline Si [J].
Li, Jing ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (03) :A156-A161
[23]   Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries [J].
Li, Weihan ;
Li, Minsi ;
Shi, Jin-an ;
Zhong, Xiongwu ;
Gu, Lin ;
Yu, Yan .
NANOSCALE, 2018, 10 (26) :12430-12435
[24]   Low temperature chemical reduction of fusional sodium metasilicate nonahydrate into a honeycomb porous silicon nanostructure [J].
Liang, Jianwen ;
Wei, Denghu ;
Lin, Ning ;
Zhu, Youngchun ;
Li, Xiaona ;
Zhang, Jingjing ;
Fan, Long ;
Qian, Yitai .
CHEMICAL COMMUNICATIONS, 2014, 50 (52) :6856-6859
[25]   Phase evolution for conversion reaction electrodes in lithium-ion batteries [J].
Lin, Feng ;
Nordlund, Dennis ;
Weng, Tsu-Chien ;
Zhu, Ye ;
Ban, Chunmei ;
Richards, Ryan M. ;
Xin, Huolin L. .
NATURE COMMUNICATIONS, 2014, 5
[26]   Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries [J].
Lin, Liangdong ;
Xu, Xuena ;
Chu, Chenxiao ;
Majeed, Muhammad K. ;
Yang, Jian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (45) :14063-14066
[27]   Polyaniline-Assisted Synthesis of Si@C/RGO as Anode Material for Rechargeable Lithium-Ion Batteries [J].
Lin, Ning ;
Zhou, Jianbin ;
Wang, Liangbiao ;
Zhu, Yongchun ;
Qian, Yitai .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (01) :409-414
[28]   Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries [J].
Liu, Jun ;
Kopold, Peter ;
van Aken, Peter A. ;
Maier, Joachim ;
Yu, Yan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (33) :9632-9636
[29]   Well-constructed silicon-based materials as high-performance lithium-ion battery anodes [J].
Liu, Lehao ;
Lyu, Jing ;
Li, Tiehu ;
Zhao, Tingkai .
NANOSCALE, 2016, 8 (02) :701-722
[30]   A molten-salt route for synthesis of Si and Ge nanoparticles: chemical reduction of oxides by electrons solvated in salt melt [J].
Liu, Xiaofeng ;
Giordano, Cristina ;
Antonietti, Markus .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (12) :5454-5459