Tauberian theorems for double sequences that are statistically summable (C, 1, 1)

被引:18
作者
Móricz, F [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
double sequence; convergence in Pringsheim's sense; statistical convergence; statistical summability (C; 1; 1); one-sided and two-sided Tauberian conditions; slow decrease; condition of Landau type; slow oscillation; condition of Hardy type;
D O I
10.1016/S0022-247X(03)00529-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (x(jk): j, k = 0, 1, 2, . . .) be a double sequence of real or complex numbers, and set sigma(mn) := (m + 1)(-1)(n + 1)-1 Sigma(j=0)(m)Sigma(k=0)(n)x(jk) for m, n = 0, 1, 2, . . . We give necessary and sufficient conditions, under which st-lim sigma(mn) = xi implies st-lim x(jk) = xi, where xi is a finite number. These Tauberian conditions are one-sided when the x(jk) are real numbers, and they are two-sided when the x(jk) are complex numbers. In particular, these Tauberian conditions are clearly satisfied if (x(jk)) is statistically slowly decreasing in the case of real sequences or if (x(jk)) is statistically slowly oscillating in the case of complex sequences. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:340 / 350
页数:11
相关论文
共 10 条
[1]  
Connor J. S., 1988, ANALYSIS, V8, P47
[2]  
Fast H., 1951, Colloq. Math, V2, P241, DOI [10.4064/cm-2-3-4-241-244, DOI 10.4064/CM-2-3-4-241-244]
[3]   Statistical extensions of some classical Tauberian theorems [J].
Fridy, JA ;
Khan, MK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2347-2355
[4]  
Fridy JA., 1985, Analysis, V5, P301, DOI DOI 10.1524/ANLY.1985.5.4.301
[5]  
Hardy G. H., 1910, P LOND MATH SOC, V8, P310
[6]  
LANDAU E, 1910, PRAC MAT FIZ, V21, P97
[7]   Tauberian conditions, under which statistical convergence follows from statistical summability (C, 1) [J].
Móricz, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :277-287
[8]  
MORICZ F, 2003, IN PRESS ARCH MATH B, V80
[9]   On divergent sequences and linear menu calculations [J].
Schmidt, R .
MATHEMATISCHE ZEITSCHRIFT, 1925, 22 :89-152
[10]  
Schoenberg I. J., 1959, AM MATH MONTHLY, V66, P361, DOI DOI 10.1080/00029890.1959.11989303