EXPANSION OF ORBITS OF SOME DYNAMICAL SYSTEMS OVER FINITE FIELDS

被引:11
作者
Gutierrez, Jaime [2 ]
Shparlinski, Igor E. [1 ]
机构
[1] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
[2] Univ Cantabria, Dept Appl Math & Comp Sci, E-39071 Santander, Spain
基金
澳大利亚研究理事会;
关键词
dynamical systems; orbits; exponential sums; additive combinatorics;
D O I
10.1017/S0004972709001270
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite field F-p = (0, ..., p - 1) of p elements, where p is a prime, we consider the distribution of elements in the orbits of a transformation xi -> psi(xi) associated with a rational function psi is an element of F-p (X). We use bounds of exponential sums to show that if N >= p(1/2+epsilon) some fixed E then no N distinct consecutive elements of such an orbit are contained in any short interval, improving the trivial lower bound N on the length of such intervals. In the case of linear fractional functions psi(x)= (aX + b)/(cX + d) is an element of F-p(X), with ad not equal bc and c not equal 0, we use a different approach, based on some results of additive combinatorics due to Bourgain, that gives a nontrivial lower bound for essentially any admissible value of N.
引用
收藏
页码:232 / 239
页数:8
相关论文
共 10 条
[1]  
[Anonymous], 1974, PURE APPL MATH
[2]  
Bourgain J., 2008, MATH P CAMBRIDGE PHI, V146, P1
[3]   MULTILINEAR EXPONENTIAL SUMS IN PRIME FIELDS UNDER OPTIMAL ENTROPY CONDITION ON THE SOURCES [J].
Bourgain, Jean .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 18 (05) :1477-1502
[4]   PLoS computational biology:: A new community journal [J].
Bourne, PE ;
Brenner, SE ;
Eisen, MB .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (01) :1-1
[5]  
CHAN TH, ACTA ARITH IN PRESS
[6]  
Drmota M., 1997, SEQUENCES DISCREPANC
[7]  
Konyagin S. V., 2002, P 4 INT C MOD PROBL, P86
[8]  
Konyagin S. V., 1999, CHARACTER SUMS EXPON
[9]  
Korobov N. M., 1992, Mathematics and Its Applications, Soviet Series, V80
[10]   EXPONENTIAL-SUMS AND GOPPA CODES .1. [J].
MORENO, CJ ;
MORENO, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (02) :523-531