Temperature measurement in double-sided laser-heated diamond anvil cell and reaction of carbon

被引:4
|
作者
Saha, P. [1 ]
Mukherjee, G. D. [1 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Dept Phys Sci, Natl Ctr High Pressure Studies, Mohanpur Campus, Nadia 741246, West Bengal, India
关键词
Laser-heated diamond anvil cell; High pressure; Reaction of carbon; PHASE-TRANSITION; HIGH-PRESSURE; CORE; IRON;
D O I
10.1007/s12648-020-01699-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, a double-sided laser-heated diamond anvil cell facility for studies at extreme conditions of pressure and temperature that has been developed is described in detail. Phase transitions occurring at extreme conditions can be mapped by accurate measurements of pressure and temperature. Micrometer-sized diamond crystals having regular facets have been synthesized at a pressure of 18 GPa and temperature 1785 K, which is confirmed by visual inspection, micro-Raman and field emission scanning electron micrograph measurements. A low-temperature gradient is observed across the sample surface during the formation of micrometer-sized diamond crystals. Our observation restricts the use of steel gasket as it can react with carbon (C) transported from the diamond anvil. The reaction of C with one of the potential thermal insulating medium Al2O3 is observed in the X-ray diffraction measurements.
引用
收藏
页码:621 / 628
页数:8
相关论文
共 50 条
  • [1] Temperature measurement in double-sided laser-heated diamond anvil cell and reaction of carbon
    P Saha
    G D Mukherjee
    Indian Journal of Physics, 2021, 95 : 621 - 628
  • [2] Measurement of thermal conductivity in laser-heated diamond anvil cell using radial temperature distribution
    Bulatov, Kamil M.
    Semenov, Alexander N.
    Bykov, Alexey A.
    Machikhin, Alexander S.
    Litasov, Konstantin D.
    Zinin, Pavel, V
    Rashchenko, Sergey, V
    HIGH PRESSURE RESEARCH, 2020, 40 (03) : 315 - 324
  • [3] The Soret diffusion in laser-heated diamond-anvil cell
    Sinmyo, Ryosuke
    Hirose, Kei
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2010, 180 (3-4) : 172 - 178
  • [4] Temperature distribution in a laser-heated diamond anvil cell as described by finite element analysis
    Farah, Frederick
    Lee, Kanani K. M.
    Akin, Minta C.
    AIP ADVANCES, 2022, 12 (10)
  • [5] Origin of temperature plateaus in laser-heated diamond anvil cell experiments
    Geballe, Zachary M.
    Jeanloz, Raymond
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (12)
  • [6] Application of nano-polycrystalline diamond to laser-heated diamond anvil cell experiments
    Ohfuji, H.
    Okada, T.
    Yagi, T.
    Sumiya, H.
    Irifune, T.
    HIGH PRESSURE RESEARCH, 2010, 30 (01) : 142 - 150
  • [7] THERMAL-ANALYSIS IN THE LASER-HEATED DIAMOND-ANVIL CELL
    SWEENEY, JS
    HEINZ, DL
    PURE AND APPLIED GEOPHYSICS, 1993, 141 (2-4) : 497 - 507
  • [8] Laser-heated diamond anvil cell at the advanced light source beamline 12.2.2
    Caldwell, Wendel A.
    Kunz, Martin
    Celestre, R. S.
    Domning, E. E.
    Walter, M. J.
    Walker, D.
    Glossinger, J.
    MacDowell, A. A.
    Padmore, H. A.
    Jeanloz, R.
    Clark, S. M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 582 (01) : 221 - 225
  • [9] Development of laser-heated diamond anvil cell facility for synthesis of novel materials
    Subramanian, N.
    Shekar, N. V. Chandra
    Kumar, N. R. Sanjay
    Sahu, P. Ch.
    CURRENT SCIENCE, 2006, 91 (02): : 175 - 182
  • [10] Finite element calculations of the time dependent thermal fluxes in the laser-heated diamond anvil cell
    Montoya, Javier A.
    Goncharov, Alexander F.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (11)