Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach

被引:64
作者
Aljarah, Ibrahim [1 ]
Mafarja, Majdi [2 ]
Heidari, Ali Asghar [3 ,4 ]
Faris, Hossam [1 ]
Mirjalili, Seyedali [5 ]
机构
[1] Univ Jordan, King Abdullah II Sch Informat Technol, Amman, Jordan
[2] Birzeit Univ, Dept Comp Sci, POB 14, Birzeit, Palestine
[3] Univ Tehran, Sch Surveying & Geospatial Engn, Tehran, Iran
[4] Natl Univ Singapore, Sch Comp, Dept Comp Sci, Singapore, Singapore
[5] Griffith Univ, Sch Informat & Commun Technol, Brisbane, Qld 4111, Australia
关键词
Optimization; Grey wolf optimizer; GWO; Tabu search; Data clustering; PARTICLE SWARM OPTIMIZATION; DIFFERENTIAL EVOLUTION; GENETIC ALGORITHM; TABU SEARCH;
D O I
10.1007/s10115-019-01358-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Grey wolf optimizer (GWO) is known as one of the recent popular metaheuristic algorithms inspired from the social collaboration and team hunting activities of grey wolves in nature. This algorithm benefits from stochastic operators, but it is still prone to stagnation in local optima and premature convergence when solving problems with a large number of variables (e.g., clustering problems). To alleviate this shortcoming, the GWO algorithm is hybridized with the well-known tabu search (TS). To investigate the performance of the proposed hybrid GWO and TS (GWOTS), it is compared with well-regarded metaheuristics on various clustering datasets. The comprehensive experiments and analysis verify that the proposed GWOTS shows an improved performance compared to GWO and can be utilized for clustering applications.
引用
收藏
页码:507 / 539
页数:33
相关论文
共 78 条
[1]   An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models [J].
Abbassi, Rabeh ;
Abbassi, Abdelkader ;
Heidari, Ali Asghar ;
Mirjalili, Seyedali .
ENERGY CONVERSION AND MANAGEMENT, 2019, 179 :362-372
[2]   A new grouping genetic algorithm for clustering problems [J].
Agustin-Blas, L. E. ;
Salcedo-Sanz, S. ;
Jimenez-Fernandez, S. ;
Carro-Calvo, L. ;
Del Ser, J. ;
Portilla-Figueras, J. A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) :9695-9703
[3]   Combining PSO and k-means to Enhance Data Clustering [J].
Ahmadyfard, Alireza ;
Modares, Hamidreza .
2008 INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS, VOLS 1 AND 2, 2008, :688-691
[4]  
Al-Madi N, 2014, 2014 IEEE SYMPOSIUM ON SWARM INTELLIGENCE (SIS), P189
[5]  
Aljarah I., 2013, P 15 ANN C COMP GEN, P169, DOI DOI 10.1145/2464576.2464661
[6]  
Aljarah I., 2020, Multi-verse optimizer: Theory, literature review, and application in data clustering, in Nature-inspired optimizers: Theories, literature reviews and applications, P123
[7]   Asynchronous accelerating multi-leader salp chains for feature selection [J].
Aljarah, Ibrahim ;
Mafarja, Majdi ;
Heidari, Ali Asghar ;
Faris, Hossam ;
Zhang, Yong ;
Mirjalili, Seyedali .
APPLIED SOFT COMPUTING, 2018, 71 :964-979
[8]  
Aljarah I, 2012, WOR CONG NAT BIOL, P104, DOI 10.1109/NaBIC.2012.6402247
[9]  
Aljarah I, 2013, 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P2642
[10]  
Aljarah I, 2013, 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P955