Synthesis of carbon nanoflake/sulfur arrays as cathode materials of lithium-sulfur batteries

被引:11
作者
Wang, Fan [1 ]
Liang, Xinqi [1 ]
Chen, Minghua [1 ]
Xia, Xinhui [2 ,3 ,4 ]
机构
[1] Harbin Univ Sci & Technol, Key Lab Engn Dielect & Applicat, Minist Educ, Harbin 150080, Heilongjiang, Peoples R China
[2] Zhejiang Univ, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[4] Xian Univ Technol, Inst Adv Electrochem Energy, Xian 710048, Shaanxi, Peoples R China
基金
中国博士后科学基金;
关键词
Lithium sulfur batteries; carbon nanoplate; hydrothermal method; electrochemical energy storage; arrays; PERFORMANCE; COMPOSITE; ELECTRODE; ANODE; LIFE;
D O I
10.1142/S1793604718400015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is of great importance to develop high-quality carbon/sulfur cathode for lithium-sulfur batteries (LSBs). Herein, we report a facile strategy to embed sulfur into interconnected carbon nanoflake matrix forming integrated electrode. Interlinked carbon nanoflakes have dual roles not only as a highly conductive matrix to host sulfur, but also act as blocking barriers to suppress the shuttle effect of intermediate polysulfides. In the light of these positive characteristics, the obtained carbon nanoflake/S cathode exhibit good LSBs performances with high capacities (1117 mAh g(-1) at 0.2 degrees C, and 741 mAh g(-1) at 0.6 degrees C) and good high-rate cycling performance. Our synthetic method provides a novel way to construct enhanced carbon/sulfur cathode for LSBs.
引用
收藏
页数:4
相关论文
共 32 条
[1]   Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries [J].
Ahn, Wook ;
Kim, Kwang-Bum ;
Jung, Kyu-Nam ;
Shin, Kyoung-Hee ;
Jin, Chang-Soo .
JOURNAL OF POWER SOURCES, 2012, 202 :394-399
[2]   Recent progress and remaining challenges in sulfur-based lithium secondary batteries - a review [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
CHEMICAL COMMUNICATIONS, 2013, 49 (90) :10545-10562
[3]   Synthesis of Se/chitosan-derived hierarchical porous carbon composite as Li-Se battery cathode [J].
Chen, Cheng ;
Zhao, Chenhao ;
Hu, Zhibiao ;
Liu, Kaiyu .
FUNCTIONAL MATERIALS LETTERS, 2017, 10 (02)
[4]   Rapid Pseudocapacitive Sodium-Ion Response Induced by 2D Ultrathin Tin Monoxide Nanoarrays [J].
Chen, Minghua ;
Chao, Dongliang ;
Liu, Jilei ;
Yan, Jiaxu ;
Zhang, Bowei ;
Huang, Yizhong ;
Lin, Jianyi ;
Shen, Ze Xiang .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (12)
[5]   Exploring highly porous Co2P nanowire arrays for electrochemical energy storage [J].
Chen, Minghua ;
Zhou, Weiwei ;
Qi, Meili ;
Yin, Jinghua ;
Xia, Xinhui ;
Chen, Qingguo .
JOURNAL OF POWER SOURCES, 2017, 342 :964-969
[6]   Sulfur/Co3O4 nanotube composite with high performances as cathode materials for lithium sulfur batteries [J].
Cheng, Hong ;
Wang, Shengping ;
Tao, Du ;
Wang, Man .
FUNCTIONAL MATERIALS LETTERS, 2014, 7 (03)
[7]   Collagen-biomorphic porous carbon nanofiber monoliths: Biosilicification-assisted sustainable synthesis and application in Li-S battery [J].
Hu, Wen ;
Shen, Tao ;
Hou, Hongying ;
Gan, Guoyou ;
Zheng, Biju ;
Li, Fengxian ;
Yi, Jianhong .
FUNCTIONAL MATERIALS LETTERS, 2016, 9 (01)
[8]   Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery [J].
Liang, Chengdu ;
Dudney, Nancy J. ;
Howe, Jane Y. .
CHEMISTRY OF MATERIALS, 2009, 21 (19) :4724-4730
[9]   3D TiC/C Core/Shell Nanowire Skeleton for Dendrite-Free and Long-Life Lithium Metal Anode [J].
Liu, Sufu ;
Xia, Xinhui ;
Zhong, Yu ;
Deng, Shengjue ;
Yao, Zhujun ;
Zhang, Liyuan ;
Cheng, Xin-Bing ;
Wang, Xiuli ;
Zhang, Qiang ;
Tu, Jiangping .
ADVANCED ENERGY MATERIALS, 2018, 8 (08)
[10]   Materials Challenges and Opportunities of Lithium Ion Batteries [J].
Manthiram, Arumugam .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (03) :176-184