Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions

被引:58
作者
Dhomse, S. S. [1 ,2 ]
Feng, W. [1 ,3 ]
Montzka, S. A. [4 ]
Hossaini, R. [5 ]
Keeble, J. [6 ,7 ]
Pyle, J. A. [6 ,7 ]
Daniel, J. S. [4 ]
Chipperfield, M. P. [1 ,2 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, NCEO, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Leeds, NCAS, Leeds LS2 9JT, W Yorkshire, England
[4] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA
[5] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England
[6] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[7] Univ Cambridge, NCAS, Cambridge CB2 1EW, England
基金
英国自然环境研究理事会;
关键词
CHEMICAL-TRANSPORT MODEL; STRATOSPHERIC OZONE; SOUTHERN-HEMISPHERE; RETURN DATES; CHEMISTRY; INCREASE; EMERGENCE; DEPLETION; VERSION; IMPACT;
D O I
10.1038/s41467-019-13717-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Antarctic ozone hole is decreasing in size but this recovery will be affected by atmospheric variability and any unexpected changes in chlorinated source gas emissions. Here, using model simulations, we show that the ozone hole will largely cease to occur by 2065 given compliance with the Montreal Protocol. If the unusual meteorology of 2002 is repeated, an ozone-hole-free-year could occur as soon as the early 2020s by some metrics. The recently discovered increase in CFC-11 emissions of similar to 13 Gg yr(-1) may delay recovery. So far the impact on ozone is small, but if these emissions indicate production for foam use much more CFC-11 may be leaked in the future. Assuming such production over 10 years, disappearance of the ozone hole will be delayed by a few years, although there are significant uncertainties. Continued, substantial future CFC-11 emissions of 67 Gg yr(-1) would delay Antarctic ozone recovery by well over a decade.
引用
收藏
页数:12
相关论文
共 49 条
[1]  
[Anonymous], 2011, Scientific Assessment of Ozone Depletion: 2010
[2]  
[Anonymous], 2018, TECHNOLOGY EC ASSESS, V3
[3]   Emission profiles from the foam and refrigeration sectors comparison with atmospheric concentrations. Part 1: Methodology and data [J].
Ashford, P ;
Clodic, D ;
McCulloch, A ;
Kuijpers, L .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2004, 27 (07) :687-700
[4]   Future Arctic ozone recovery: the importance of chemistry and dynamics [J].
Bednarz, Ewa M. ;
Maycock, Amanda C. ;
Abraham, N. Luke ;
Braesicke, Peter ;
Dessens, Olivier ;
Pyle, John A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (18) :12159-12176
[5]  
Butler A. H., 2016, ENVIRON RES LETT, V11, P2
[6]  
Carpenter L. J., 2018, SCI ASSESSMENT OZONE
[7]   New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments [J].
Chipperfield, M. P. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2006, 132 (617) :1179-1203
[8]   Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol [J].
Chipperfield, M. P. ;
Dhomse, S. S. ;
Feng, W. ;
McKenzie, R. L. ;
Velders, G. J. M. ;
Pyle, J. A. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Multimodel estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future [J].
Chipperfield, M. P. ;
Liang, Q. ;
Strahan, S. E. ;
Morgenstern, O. ;
Dhomse, S. S. ;
Abraham, N. L. ;
Archibald, A. T. ;
Bekki, S. ;
Braesicke, P. ;
Di Genova, G. ;
Fleming, E. L. ;
Hardiman, S. C. ;
Iachetti, D. ;
Jackman, C. H. ;
Kinnison, D. E. ;
Marchand, M. ;
Pitari, G. ;
Pyle, J. A. ;
Rozanov, E. ;
Stenke, A. ;
Tummon, F. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (05) :2555-2573
[10]   Relative influences of atmospheric chemistry and transport on Arctic ozone trends [J].
Chipperfield, MP ;
Jones, RL .
NATURE, 1999, 400 (6744) :551-554