An evaluation of global organic aerosol schemes using airborne observations

被引:105
作者
Pai, Sidhant J. [1 ]
Heald, Colette L. [1 ,2 ]
Pierce, Jeffrey R. [3 ]
Farina, Salvatore C. [3 ]
Marais, Eloise A. [4 ]
Jimenez, Jose L. [5 ,6 ]
Campuzano-Jost, Pedro [5 ,6 ]
Nault, Benjamin A. [5 ,6 ]
Middlebrook, Ann M. [7 ]
Coe, Hugh [8 ]
Shilling, John E. [9 ]
Bahreini, Roya [10 ]
Dingle, Justin H. [10 ]
Vu, Kennedy [10 ]
机构
[1] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[3] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[4] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England
[5] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[6] Univ Colorado, CIRES, Boulder, CO 80309 USA
[7] NOAA, Earth Syst Res Lab, Chem Sci Div, 325 Broadway, Boulder, CO 80305 USA
[8] Univ Manchester, Ctr Atmospher Sci, Sch Earth & Environm Sci, Manchester M13 9PL, Lancs, England
[9] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA
[10] Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
AIR-POLLUTION; AIRCRAFT OBSERVATIONS; CHEMICAL-COMPOSITION; EMISSIONS INVENTORY; MASS-SPECTROMETER; DRY DEPOSITION; UNITED-STATES; NOX EMISSIONS; SOA FORMATION; SOUTH-KOREA;
D O I
10.5194/acp-20-2637-2020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chemical transport models have historically struggled to accurately simulate the magnitude and variability of observed organic aerosol (OA), with previous studies demonstrating that models significantly underestimate observed concentrations in the troposphere. In this study, we explore two different model OA schemes within the standard GEOS-Chem chemical transport model and evaluate the simulations against a suite of 15 globally distributed airborne campaigns from 2008 to 2017, primarily in the spring and summer seasons. These include the ATom, KORUS-AQ, GoAmazon, FRAPPE, SEAC4RS, SENEX, DC3, CalNex, OP3, EUCAARI, ARCTAS and ARCPAC campaigns and provide broad coverage over a diverse set of atmospheric composition regimes - anthropogenic, biogenic, pyrogenic and remote. The schemes include significant differences in their treatment of the primary and secondary components of OA - a "simple scheme" that models primary OA (POA) as non-volatile and takes a fixed-yield approach to secondary OA (SOA) formation and a "complex scheme" that simulates POA as semi-volatile and uses a more sophisticated volatility basis set approach for non-isoprene SOA, with an explicit aqueous uptake mechanism to model isoprene SOA. Despite these substantial differences, both the simple and complex schemes perform comparably across the aggregate dataset in their ability to capture the observed variability (with an R-2 of 0.41 and 0.44, respectively). The simple scheme displays greater skill in minimizing the overall model bias (with a normalized mean bias of 0.04 compared to 0.30 for the complex scheme). Across both schemes, the model skill in reproducing observed OA is superior to previous model evaluations and approaches the fidelity of the sulfate simulation within the GEOS-Chem model. However, there are significant differences in model performance across different chemical source regimes, classified here into seven categories. Higher-resolution nested regional simulations indicate that model resolution is an important factor in capturing variability in highly localized campaigns, while also demonstrating the importance of well-constrained emissions inventories and local meteorology, particularly over Asia. Our analysis suggests that a semi-volatile treatment of POA is superior to a non-volatile treatment. It is also likely that the complex scheme parameterization overestimates biogenic SOA at the global scale. While this study identifies factors within the SOA schemes that likely contribute to OA model bias (such as a strong dependency of the bias in the complex scheme on relative humidity and sulfate concentrations), comparisons with the skill of the sulfate aerosol scheme in GEOS-Chem indicate the importance of other drivers of bias, such as emissions, transport and deposition, that are exogenous to the OA chemical scheme.
引用
收藏
页码:2637 / 2665
页数:29
相关论文
共 106 条
  • [1] Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition
    Amos, H. M.
    Jacob, D. J.
    Holmes, C. D.
    Fisher, J. A.
    Wang, Q.
    Yantosca, R. M.
    Corbitt, E. S.
    Galarneau, E.
    Rutter, A. P.
    Gustin, M. S.
    Steffen, A.
    Schauer, J. J.
    Graydon, J. A.
    St Louis, V. L.
    Talbot, R. W.
    Edgerton, E. S.
    Zhang, Y.
    Sunderland, E. M.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (01) : 591 - 603
  • [2] [Anonymous], KORUS AQ AIRBORNE MI
  • [3] [Anonymous], ALL DATA ARCTIC RES
  • [4] [Anonymous], HARVARD WET DEPOSITI
  • [5] Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas
    Bahreini, R.
    Ervens, B.
    Middlebrook, A. M.
    Warneke, C.
    de Gouw, J. A.
    DeCarlo, P. F.
    Jimenez, J. L.
    Brock, C. A.
    Neuman, J. A.
    Ryerson, T. B.
    Stark, H.
    Atlas, E.
    Brioude, J.
    Fried, A.
    Holloway, J. S.
    Peischl, J.
    Richter, D.
    Walega, J.
    Weibring, P.
    Wollny, A. G.
    Fehsenfeld, F. C.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
  • [6] Sources and characteristics of summertime organic aerosol in the Colorado Front Range: perspective from measurements and WRF-Chem modeling
    Bahreini, Roya
    Ahmadov, Ravan
    McKeen, Stu A.
    Vu, Kennedy T.
    Dingle, Justin H.
    Apel, Eric C.
    Blake, Donald R.
    Blake, Nicola
    Campos, Teresa L.
    Cantrell, Chris
    Flocke, Frank
    Fried, Alan
    Gilman, Jessica B.
    Hills, Alan J.
    Hornbrook, Rebecca S.
    Huey, Greg
    Kaser, Lisa
    Lerner, Brian M.
    Mauldin, Roy L.
    Meinardi, Simone
    Montzka, Denise D.
    Richter, Dirk
    Schroeder, Jason R.
    Stell, Meghan
    Tanner, David
    Walega, James
    Weibring, Peter
    Weinheimer, Andrew
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (11) : 8293 - 8312
  • [7] THE DEEP CONVECTIVE CLOUDS AND CHEMISTRY (DC3) FIELD CAMPAIGN
    Barth, Mary C.
    Cantrell, Christopher A.
    Brune, William H.
    Rutledge, Steven A.
    Crawford, James H.
    Huntrieser, Heidi
    Carey, Lawrence D.
    MacGorman, Donald
    Weisman, Morris
    Pickering, Kenneth E.
    Bruning, Eric
    Anderson, Bruce
    Apel, Eric
    Biggerstaff, Michael
    Campos, Teresa
    Campuzano-Jost, Pedro
    Cohen, Ronald
    Crounse, John
    Day, Douglas A.
    Diskin, Glenn
    Flocke, Frank
    Fried, Alan
    Garland, Charity
    Heikes, Brian
    Honomichl, Shawn
    Hornbrook, Rebecca
    Huey, L. Gregory
    Jimenez, Jose L.
    Lang, Timothy
    Lichtenstern, Michael
    Mikoviny, Tomas
    Nault, Benjamin
    O'Sullivan, Daniel
    Pan, Laura L.
    Peischl, Jeff
    Pollack, Ilana
    Richter, Dirk
    Riemer, Daniel
    Ryerson, Thomas
    Schlager, Hans
    St Clair, Jason
    Walega, James
    Weibring, Petter
    Weinheimer, Andrew
    Wennberg, Paul
    Wisthaler, Armin
    Wooldridge, Paul J.
    Ziegler, Conrad
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (08) : 1281 - 1309
  • [8] Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles
    Bregonzio-Rozier, L.
    Giorio, C.
    Siekmann, F.
    Pangui, E.
    Morales, S. B.
    Temime-Roussel, B.
    Gratien, A.
    Michoud, V.
    Cazaunau, M.
    DeWitt, H. L.
    Tapparo, A.
    Monod, A.
    Doussin, J. -F.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (03) : 1747 - 1760
  • [9] Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project
    Brock, C. A.
    Cozic, J.
    Bahreini, R.
    Froyd, K. D.
    Middlebrook, A. M.
    McComiskey, A.
    Brioude, J.
    Cooper, O. R.
    Stohl, A.
    Aikin, K. C.
    de Gouw, J. A.
    Fahey, D. W.
    Ferrare, R. A.
    Gao, R-S.
    Gore, W.
    Holloway, J. S.
    Huebler, G.
    Jefferson, A.
    Lack, D. A.
    Lance, S.
    Moore, R. H.
    Murphy, D. M.
    Nenes, A.
    Novelli, P. C.
    Nowak, J. B.
    Ogren, J. A.
    Peischl, J.
    Pierce, R. B.
    Pilewskie, P.
    Quinn, P. K.
    Ryerson, T. B.
    Schmidt, K. S.
    Schwarz, J. P.
    Sodemann, H.
    Spackman, J. R.
    Stark, H.
    Thomson, D. S.
    Thornberry, T.
    Veres, P.
    Watts, L. A.
    Warneke, C.
    Wollny, A. G.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (06) : 2423 - 2453
  • [10] Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production During the 2013 Southern Oxidant and Aerosol Study (SOAS)
    Budisulistiorini, Sri Hapsari
    Nenes, Athanasios
    Carlton, Annmarie G.
    Surratt, Jason D.
    McNeill, V. Faye
    Pye, Havala O. T.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (09) : 5026 - 5034