Well-posedness of stochastic modified Kawahara equation

被引:26
作者
Agarwal, P. [1 ,2 ,3 ,4 ]
Hyder, Abd-Allah [5 ,6 ]
Zakarya, M. [5 ,7 ]
机构
[1] Anand Int Coll Engn, Dept Math, Jaipur, Rajasthan, India
[2] Netaji Subhas Univ Technol, Dept Math, New Delhi, India
[3] Harish Chandra Res Inst HRI, Dept Math, Allahbad, India
[4] Int Ctr Basic & Appl Sci, Jaipur, Rajasthan, India
[5] King Khalid Univ, Dept Math, Coll Sci, Abha, Saudi Arabia
[6] Al Azhar Univ, Dept Engn Math & Phys, Fac Engn, Cairo, Egypt
[7] Al Azhar Univ, Dept Math, Fac Sci, Assiut, Egypt
关键词
Modified Kawahara equation; Well-posedness; Wiener process; Fixed point theorem; Fourier restriction method; WATER-WAVES; EXISTENCE; MODEL;
D O I
10.1186/s13662-019-2485-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Cauchy problem for the stochastic modified Kawahara equation, which is a fifth-order shallow water wave equation. We prove local well-posedness for data in Hs(R), s = -1/4. Moreover, we get the global existence for L2(R) solutions. Due to the non-zero singularity of the phase function, a fixed point argument and the Fourier restriction method are proposed.
引用
收藏
页数:10
相关论文
共 25 条
[2]   MODEL FOR 2-WAY PROPAGATION OF WATER WAVES IN A CHANNEL [J].
BONA, JL ;
SMITH, R .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :167-182
[3]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P107
[4]  
Da Prato G., 1992, Encyclopedia of Mathematics and Its Applications, DOI DOI 10.1017/CBO9781107295513
[5]   On the stochastic Korteweg-deVries equation [J].
de Bouard, A ;
Debussche, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (01) :215-251
[6]   White noise driven Korteweg-de Vries equation [J].
de Bouard, A ;
Debussche, A ;
Tsutsumi, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (02) :532-558
[7]  
Ghany H.A., 2012, INT REV PHYS, V6, P153
[8]  
Ghany H.A., 2017, APPL MATH INFORM SCI, V11, P915, DOI [10.18576/amis/110332, DOI 10.18576/AMIS/110332]
[9]   Exact Travelling Wave Solutions for Stochastic Fractional Hirota-Satsuma Coupled KdV Equations [J].
Ghany, Hossam A. ;
Elagan, S. K. ;
Hyder, A. .
CHINESE JOURNAL OF PHYSICS, 2015, 53 (04)
[10]   Abundant solutions of Wick-type stochastic fractional 2D KdV equations [J].
Ghany, Hossam A. ;
Hyder, Abd-Allah .
CHINESE PHYSICS B, 2014, 23 (06)