The enhanced measurement-device-independent quantum key distribution with heralded pair coherent state

被引:5
作者
He, Yefeng [1 ]
Ma, Wenping [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Cyberspace Secur, Xian 710121, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2020年 / 34卷 / 04期
基金
中国国家自然科学基金;
关键词
Quantum cryptography; measurement-device-independent quantum key distribution; heralded pair coherent state; orbital angular momentum; pulse position modulation; STATISTICAL FLUCTUATION ANALYSIS; SECURITY ANALYSIS; PROTOCOL;
D O I
10.1142/S0217984920500633
中图分类号
O59 [应用物理学];
学科分类号
摘要
With heralded pair coherent states (HPCS), orbital angular momentum (OAM) states and pulse position modulation (PPM) technology, a decoy-state measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed. OAM states and PPM technology are used to realize the coding of the signal states in the HPCS light source. The use of HPCS light source, OAM coding and PPM coding cannot only reduce the error rate but also improve the key generation rate and communication distance. The new MDI-QKD protocol also employs three-intensity decoy states to avoid the attacks against the light source. By calculating the error rate and key generation rate, the performance of the MDI-QKD protocol is analyzed. Numerical simulation shows that the protocol has very low error rate and very high key generation rate. Moreover, the maximum communication distance can reach 455 km.
引用
收藏
页数:11
相关论文
共 45 条
[1]  
Bennett C. H., 1984, P IEEE INT C COMP SY, DOI [10.1016/j.tcs.2014.05.025, DOI 10.1016/J.TCS.2014.05.025]
[2]   Measurement device-independent quantum key distribution with heralded pair coherent state [J].
Dong Chen ;
Zhao Shang-Hong ;
Shi Lei .
QUANTUM INFORMATION PROCESSING, 2016, 15 (10) :4253-4263
[3]   Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits [J].
Ferreira da Silva, T. ;
Vitoreti, D. ;
Xavier, G. B. ;
do Amaral, G. C. ;
Temporao, G. P. ;
von der Weid, J. P. .
PHYSICAL REVIEW A, 2013, 88 (05)
[4]   Quantum key distribution without alternative measurements and rotations [J].
Gao, F ;
Guo, FZ ;
Wen, QY ;
Zhu, FC .
PHYSICS LETTERS A, 2006, 349 (1-4) :53-58
[5]   Quantum private query: A new kind of practical quantum cryptographic protocol [J].
Gao, Fei ;
Qin, SuJuan ;
Huang, Wei ;
Wen, QiaoYan .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (07)
[6]   Postprocessing of the Oblivious Key in Quantum Private Query [J].
Gao, Fei ;
Liu, Bin ;
Huang, Wei ;
Wen, Qiao-Yan .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03) :98-108
[7]   Two-party quantum key agreement against collective noise [J].
He, Ye-Feng ;
Ma, Wen-Ping .
QUANTUM INFORMATION PROCESSING, 2016, 15 (12) :5023-5035
[8]   Quantum key agreement protocols with four-qubit cluster states [J].
He, Ye-Feng ;
Ma, Wen-Ping .
QUANTUM INFORMATION PROCESSING, 2015, 14 (09) :3483-3498
[9]   Measurement-device-independent quantum key distribution with source state errors in photon number space [J].
Jiang, Cong ;
Yu, Zong-Wen ;
Wang, Xiang-Bin .
PHYSICAL REVIEW A, 2016, 94 (06)
[10]   Design a New Protocol and Compare with BB84 Protocol for Quantum Key Distribution [J].
Kalra, Manish ;
Poonia, Ramesh C. .
SOFT COMPUTING FOR PROBLEM SOLVING, 2019, 817 :969-978