Artificial intelligence and machine learning in oncologic imaging

被引:0
作者
Kleesiek, Jens [1 ,2 ]
Murray, Jacob M. [1 ]
Kaissis, Georgios [3 ]
Braren, Rickmer [2 ,3 ]
机构
[1] German Canc Res Ctr, Dept Radiol, AG Computat Radiol, Heidelberg, Germany
[2] German Canc Consortium DKTK, Heidelberg, Germany
[3] Tech Univ Munich, Sch Med, Dept Diagnost & Intervent Radiol, Munich, Germany
来源
ONKOLOGE | 2020年 / 26卷 / 01期
关键词
Machine learning; Computer-assisted image processing; Diagnostic imaging; Deep Learning; Neural networks (computer); CANCER; CLASSIFICATION; PATHOLOGISTS; RADIOMICS;
D O I
10.1007/s00761-019-00679-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Machine learning (ML) is finding entry into many areas of society, including medicine. This transformation has the potential to drastically change the perception of medicine and medical practice. While these advances currently only influence clinical routine in isolated cases, they also come with risks. These aspects become particularly clear when considering the different stages of oncologic patient care and the involved interdisciplinary and intermodality interactions. In recent publications, computers-in collaboration with humans or alone-have been outperforming humans. This pertains to tumor identification, tumor classification, creation of prognoses, and evaluation of treatments. Additionally, ML algorithms, e.g., artificial neural networks (ANNs), which constitute the drivers behind many of the latest achievements in ML, can deliver this level of performance in a reproducible, fast, and cheap manner. Objective. This review elucidates the current state of research on ML in oncology by focusing on selected tumor entities, and relates this to the development of research and medicine as a whole. Materials and methods. This work is based on a selective literature search in the databases PubMed and arXiv. Conclusion. In the future, AI applications will develop into an integral part of the medical profession and offer advantages for oncologic diagnostics and treatment.
引用
收藏
页码:60 / 65
页数:6
相关论文
共 42 条
[1]  
[Anonymous], 2018, ADVERSARIAL ATTACKS
[2]  
[Anonymous], 2013, LUNG CANC SCREEN
[3]  
[Anonymous], 2019, CT GAN MALICIOUS TAM
[4]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[5]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[6]   Radiomics Based on Adapted Diffusion Kurtosis Imaging Helps to Clarify Most Mammographic Findings Suspicious for Cancer [J].
Bickelhaupt, Sebastian ;
Jaeger, Paul Ferdinand ;
Laun, Frederik Bernd ;
Lederer, Wolfgang ;
Daniel, Heidi ;
Kuder, Tristan Anselm ;
Wuesthof, Lorenz ;
Paech, Daniel ;
Bonekamp, David ;
Radbruch, Alexander ;
Delorme, Stefan ;
Schlemmer, Heinz-Peter ;
Steudle, Franziska Hildegard ;
Maier-Hein, Klaus Hermann .
RADIOLOGY, 2018, 287 (03) :761-770
[7]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[8]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[9]  
CASE N., 2018, Journal of Design and Science, V3, DOI DOI 10.21428/61B2215C
[10]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+