Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones

被引:3
作者
Pessoa, Claudio [1 ]
Ribeiro, Ronisio [1 ]
机构
[1] Univ Estadual Paulista, UNESP, Inst Biociencias Letras & Ciencias Exatas, R Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2022年 / 16卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
Limit Cycles; Piecewise linear differential system; Hamiltonian systems; Period annulus; LIMIT-CYCLES; BIFURCATION;
D O I
10.1007/s40863-022-00313-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the number of limit cycles that can bifurcate from a period annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. More precisely, we consider the case where the period annulus, bounded by a heteroclinic orbit or homoclinic loop, is obtained from a real center of the central subsystem, i.e. the system defined between the two parallel lines, and two real saddles of the others subsystems. Denoting by H(n) the number of limit cycles that can bifurcate from this period annulus by polynomial perturbations of degree n, we prove that if the period annulus is bounded by a heteroclinic orbit then H(1) >= 2, H(2) >= 3 and H(3) >= 5. Now, if the period annulus is bounded by a homoclinic loop then H(1) >= 3, H(2) >= 4 and H(3) >= 7. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system.
引用
收藏
页码:932 / 956
页数:25
相关论文
共 25 条
  • [11] Limit Cycles in the Discontinuous Planar Piecewise Linear Systems with Three Zones
    Li, Zhengkang
    Liu, Xingbo
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)
  • [12] BIFURCATION OF LIMIT CYCLES BY PERTURBING PIECEWISE HAMILTONIAN SYSTEMS
    Liu, Xia
    Han, Maoan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (05): : 1379 - 1390
  • [13] Llibre J., 2014, SYMMETRIC CONTINUOUS
  • [14] Piecewise linear differential systems with only centers can create limit cycles?
    Llibre, Jaume
    Teixeira, Marco Antonio
    [J]. NONLINEAR DYNAMICS, 2018, 91 (01) : 249 - 255
  • [15] Uniqueness and Non-uniqueness of Limit Cycles for Piecewise Linear Differential Systems with Three Zones and No Symmetry
    Llibre, Jaume
    Ponce, Enrique
    Valls, Claudia
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (04) : 861 - 887
  • [16] On the birth of limit cycles for non-smooth dynamical systems
    Llibre, Jaume
    Novaes, Douglas D.
    Teixeira, Marco A.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (03): : 229 - 244
  • [17] Limit cycles for m-piecewise discontinuous polynomial Li,nard differential equations
    Llibre, Jaume
    Teixeira, Marco Antonio
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 51 - 66
  • [18] MAGUMOS EQUATION
    MCKEAN, HP
    [J]. ADVANCES IN MATHEMATICS, 1970, 4 (03) : 209 - &
  • [19] ACTIVE PULSE TRANSMISSION LINE SIMULATING NERVE AXON
    NAGUMO, J
    ARIMOTO, S
    YOSHIZAWA, S
    [J]. PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1962, 50 (10): : 2061 - &
  • [20] Limit Cycles Bifurcating from a Period Annulus in Continuous Piecewise Linear Differential Systems with Three Zones
    Silva Lima, Mauricio Firmino
    Pessoa, Claudio
    Pereira, Weber F.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (02):