Persistence of periodic solutions from discontinuous planar piecewise linear Hamiltonian differential systems with three zones

被引:3
作者
Pessoa, Claudio [1 ]
Ribeiro, Ronisio [1 ]
机构
[1] Univ Estadual Paulista, UNESP, Inst Biociencias Letras & Ciencias Exatas, R Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2022年 / 16卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
Limit Cycles; Piecewise linear differential system; Hamiltonian systems; Period annulus; LIMIT-CYCLES; BIFURCATION;
D O I
10.1007/s40863-022-00313-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the number of limit cycles that can bifurcate from a period annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. More precisely, we consider the case where the period annulus, bounded by a heteroclinic orbit or homoclinic loop, is obtained from a real center of the central subsystem, i.e. the system defined between the two parallel lines, and two real saddles of the others subsystems. Denoting by H(n) the number of limit cycles that can bifurcate from this period annulus by polynomial perturbations of degree n, we prove that if the period annulus is bounded by a heteroclinic orbit then H(1) >= 2, H(2) >= 3 and H(3) >= 5. Now, if the period annulus is bounded by a homoclinic loop then H(1) >= 3, H(2) >= 4 and H(3) >= 7. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system.
引用
收藏
页码:932 / 956
页数:25
相关论文
共 25 条
  • [1] Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane
    Braga, Denis de Carvalho
    Mello, Luis Fernando
    [J]. NONLINEAR DYNAMICS, 2013, 73 (03) : 1283 - 1288
  • [2] PIECEWISE LINEAR PERTURBATIONS OF A LINEAR CENTER
    Buzzi, Claudio
    Pessoa, Claudio
    Torregrosa, Joan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) : 3915 - 3936
  • [3] CANONICAL REALIZATION OF CHUA CIRCUIT FAMILY
    CHUA, LO
    LIN, GN
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (07): : 885 - 902
  • [4] DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
  • [5] IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE
    FITZHUGH, R
    [J]. BIOPHYSICAL JOURNAL, 1961, 1 (06) : 445 - &
  • [6] Limit Cycles in Planar Piecewise Linear Hamiltonian Systems with Three Zones Without Equilibrium Points
    Fonseca, Alexander Fernandes
    Llibre, Jaume
    Mello, Luis Fernando
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (11):
  • [7] Bifurcation sets of continuous piecewise linear systems with two zones
    Freire, E
    Ponce, E
    Rodrigo, F
    Torres, F
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11): : 2073 - 2097
  • [8] Freire E., 2014, PUBL MAT, V58, P221
  • [9] Hilbert D., 2003, Bull. Amer. Math. Soc. (N.S.), V13, P47, DOI [10.1090/S0002-9904-1902-00923-3, DOI 10.1090/S0002-9904-1902-00923-3]
  • [10] Bifurcation of periodic orbits emanated from a vertex in discontinuous planar systems
    Hu, Nan
    Du, Zhengdong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (12) : 3436 - 3448