Retrieving absorption coefficients of multiple phytoplankton pigments from hyperspectral remote sensing reflectance measured over cyanobacteria bloom waters

被引:38
作者
Wang, Guoqing [1 ]
Lee, Zhongping [1 ]
Mishra, Deepak R. [2 ]
Ma, Ronghua [3 ]
机构
[1] Univ Massachusetts, Sch Environm, Boston, MA 02125 USA
[2] Univ Georgia, Dept Geog, Ctr Geospatial Res, Athens, GA 30602 USA
[3] Chinese Acad Sci, Nanjing Inst Geog & Limnol, State Key Lab Lake Sci & Environm, Nanjing, Jiangsu, Peoples R China
来源
LIMNOLOGY AND OCEANOGRAPHY-METHODS | 2016年 / 14卷 / 07期
基金
美国国家航空航天局; 美国海洋和大气管理局; 中国国家自然科学基金;
关键词
DISSOLVED ORGANIC-MATTER; OCEAN COLOR INVERSION; CHLOROPHYLL-A; SPECTRAL ABSORPTION; OPTICAL-PROPERTIES; SHALLOW WATERS; PURE SEAWATER; MODEL; ALGORITHM; LIGHT;
D O I
10.1002/lom3.10102
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Light absorption by phytoplankton pigments plays an important role not only in photosynthesis but also in modulating the appearance of water color. Some pigments are markers of phytoplankton classes or species. To better characterize phytoplankton, an inversion model is developed to retrieve the absorption coefficients of multiple pigments from hyperspectral remote sensing reflectance. In the model, the Gaussian functions proposed by Hoepffner and Sathyendranath (1991) were refined and implemented for the estimation of the absorption coefficients of multiple pigments. Application of the inversion model to remote sensing measurements made in cyanobacteria bloom waters resulted in the absorption coefficients of chlorophylls a, b, and c, carotenoid, phycoerythrin, and phycocyanin with the mean absolute relative error under 32% for wavelengths between 400 nm and 700 nm. The results indicate that it is feasible to retrieve the absorption coefficients of multiple pigments from hyperspectral remote sensing reflectance as long as the pigments make adequate contributions to the total absorption coefficient.
引用
收藏
页码:432 / 447
页数:16
相关论文
共 75 条
[1]  
[Anonymous], 2010, Light and Photosynthesis in Aquatic Ecosystems
[2]  
[Anonymous], 2011, PHYTOPLANKTON PIGMEN
[3]   Photosynthetic rates derived from satellite-based chlorophyll concentration [J].
Behrenfeld, MJ ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (01) :1-20
[4]   DERIVATIVE ANALYSIS OF SPECTRAL ABSORPTION BY PHOTOSYNTHETIC PIGMENTS IN THE WESTERN SARGASSO SEA [J].
BIDIGARE, RR ;
MORROW, JH ;
KIEFER, DA .
JOURNAL OF MARINE RESEARCH, 1989, 47 (02) :323-341
[5]  
BIDIGARE RR, 1990, P SOC PHOTO-OPT INS, V1302, P290, DOI 10.1117/12.21451
[6]   A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans [J].
Blondeau-Patissier, David ;
Gower, James F. R. ;
Dekker, Arnold G. ;
Phinn, Stuart R. ;
Brando, Vittorio E. .
PROGRESS IN OCEANOGRAPHY, 2014, 123 :123-144
[7]   Adaptive semianalytical inversion of ocean color radiometry in optically complex waters [J].
Brando, Vittorio E. ;
Dekker, Arnold G. ;
Park, Young Je ;
Schroeder, Thomas .
APPLIED OPTICS, 2012, 51 (15) :2808-2833
[8]   A three-component model of phytoplankton size class for the Atlantic Ocean [J].
Brewin, Robert J. W. ;
Sathyendranath, Shubha ;
Hirata, Takafumi ;
Lavender, Samantha J. ;
Barciela, Rosa M. ;
Hardman-Mountford, Nick J. .
ECOLOGICAL MODELLING, 2010, 221 (11) :1472-1483
[9]   Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations [J].
Bricaud, A ;
Claustre, H ;
Ras, J ;
Oubelkheir, K .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2004, 109 (C11) :C110101-12
[10]   VARIABILITY IN THE CHLOROPHYLL-SPECIFIC ABSORPTION-COEFFICIENTS OF NATURAL PHYTOPLANKTON - ANALYSIS AND PARAMETERIZATION [J].
BRICAUD, A ;
BABIN, M ;
MOREL, A ;
CLAUSTRE, H .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1995, 100 (C7) :13321-13332