Braided Tensor Categories of Admissible Modules for Affine Lie Algebras

被引:43
作者
Creutzig, Thomas [1 ]
Huang, Yi-Zhi [2 ]
Yang, Jinwei [3 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[3] Yale Univ, Dept Math, 10 Hillhouse Ave, New Haven, CT 06511 USA
基金
加拿大自然科学与工程研究理事会;
关键词
VERTEX OPERATOR-ALGEBRAS; FRACTIONAL LEVEL; FUSION RULES; INVARIANT REPRESENTATIONS; VERLINDE FORMULAS; PRODUCT THEORY; FIELD-THEORY; MODELS; DIMENSIONS; COHOMOLOGY;
D O I
10.1007/s00220-018-3217-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the tensor category theory developed by Lepowsky, Zhang and the second author, we construct a braided tensor category structure with a twist on a semisimple category of modules for an affine Lie algebra at an admissible level. We conjecture that this braided tensor category is rigid and thus is a ribbon category. We also give conjectures on the modularity of this category and on the equivalence with a suitable quantum group tensor category. In the special case that the affine Lie algebra is , we prove the rigidity and modularity conjectures.
引用
收藏
页码:827 / 854
页数:28
相关论文
共 83 条
[2]  
Adamovic D, 1995, MATH RES LETT, V2, P563
[3]  
[Anonymous], 1994, GLAS MAT
[4]  
[Anonymous], ARXIV161005865
[5]  
Arakawa T., ARXIV0180103822
[6]   RATIONALITY OF ADMISSIBLE AFFINE VERTEX ALGEBRAS IN THE CATEGORY O [J].
Arakawa, Tomoyuki .
DUKE MATHEMATICAL JOURNAL, 2016, 165 (01) :67-93
[7]  
Auger J., 2018, LETT MATH PHYS, P1
[8]   FUSION RULES FOR THE FRACTIONAL LEVEL (SL(2))CAP ALGEBRA [J].
AWATA, H ;
YAMADA, Y .
MODERN PHYSICS LETTERS A, 1992, 7 (13) :1185-1195
[9]   Vertex operator algebras associated to type G affine Lie algebras [J].
Axtell, Jonathan D. ;
Lee, Kyu-Hwan .
JOURNAL OF ALGEBRA, 2011, 337 (01) :195-223
[10]  
Bakalov B., 2001, U LECT SERIES, V21