DIMEX Runge-Kutta finite volume methods for multidimensional hyperbolic systems

被引:4
|
作者
Bertolazzi, Enrico
Manzini, Gianmarco
机构
[1] Univ Trent, Dipartimento Ingn Meccan & Strutt, I-38050 Trento, Italy
[2] CNR, IMATI, I-27100 Pavia, Italy
关键词
finite volume; Runge-Kutta; implicit-explicit; partial differential equation; M-matrix;
D O I
10.1016/j.matcom.2006.12.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a class of finite volume methods for the discretization of time-dependent multidimensional hyperbolic systems in divergence form on unstructured grids. We discretize the divergence of the flux function by a cell-centered finite volume method whose spatial accuracy is provided by including into the scheme non-oscillatory piecewise polynomial reconstructions. We assume that the numerical flux function can be decomposed in a convective term and a non-convective term. The convective term, which may be source of numerical stiffness in high-speed flow regions, is treated implicitly, while the non-convective term is always discretized explicitly. To this purpose, we use the diagonally implicit-explicit Runge-Kutta (DIMEX-RK) time-marching formulation. We analyze the structural properties of the matrix operators that result from coupling finite volumes and DIMEX-RK time-stepping schemes by using M-matrix theory. Finally, we show the behavior of these methods by some numerical examples. (c) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 160
页数:20
相关论文
共 50 条
  • [1] Numerical comparison of WENO finite volume and Runge-Kutta discontinuous Galerkin methods
    Zhou T.
    Li Y.
    Shu C.-W.
    Zhou, T., 2001, Kluwer Academic/Plenum Publishers (16) : 145 - 171
  • [2] Error in Runge-Kutta methods
    Prentice, J. S. C.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2013, 44 (03) : 434 - 442
  • [3] CONTRACTIVITY OF RUNGE-KUTTA METHODS FOR CONVEX GRADIENT SYSTEMS
    Sanz Serna, J. M.
    Zygalakis, K. C.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (04) : 2079 - 2092
  • [4] DIAGNOSING STIFFNESS FOR RUNGE-KUTTA METHODS
    SHAMPINE, LF
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (02): : 260 - 272
  • [5] Symmetries of explicit Runge-Kutta methods
    Khashin, Sergey
    NUMERICAL ALGORITHMS, 2014, 65 (03) : 597 - 609
  • [6] Symmetries of explicit Runge-Kutta methods
    Sergey Khashin
    Numerical Algorithms, 2014, 65 : 597 - 609
  • [7] Optimal Runge-Kutta Stability Polynomials for Multidimensional High-Order Methods
    Siavash Hedayati Nasab
    Carlos A. Pereira
    Brian C. Vermeire
    Journal of Scientific Computing, 2021, 89
  • [8] Optimal Runge-Kutta Stability Polynomials for Multidimensional High-Order Methods
    Nasab, Siavash Hedayati
    Pereira, Carlos A.
    Vermeire, Brian C.
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)
  • [9] Starting algorithms for Gauss Runge-Kutta methods for Hamiltonian systems
    Calvo, M
    Laburta, MP
    Montijano, JI
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) : 401 - 410
  • [10] Jacobian-Free Explicit Multiderivative Runge-Kutta Methods for Hyperbolic Conservation Laws
    Chouchoulis, Jeremy
    Schutz, Jochen
    Zeifang, Jonas
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (03)