Categorification of a Recursive Formula for Kazhdan-Lusztig Polynomials

被引:1
作者
Plaza, David [1 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Ave Lircay S-N, Talca, Chile
关键词
Branching rules; Cellular algebras; Kazhdan-Lusztig polynomials; Soergel bimodules; 05E10; 16D90; BIMODULES; ALGEBRAS;
D O I
10.1080/00927872.2015.1087551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain explicit branching rules for graded cell modules and graded simple modules over the endomorphism algebra of a Bott-Samelson bimodule. These rules allow us to categorify a well-known recursive formula for Kazhdan-Lusztig polynomials.
引用
收藏
页码:4354 / 4377
页数:24
相关论文
共 14 条
[1]  
Donkin S., 1998, THE Q SCHUR ALGEBRA
[2]  
Elias B., 2013, ARXIV13090865
[3]   The Hodge theory of Soergel bimodules [J].
Elias, Ben ;
Williamson, Geordie .
ANNALS OF MATHEMATICS, 2014, 180 (03) :1089-1136
[4]   Cellular algebras [J].
Graham, JJ ;
Lehrer, GI .
INVENTIONES MATHEMATICAE, 1996, 123 (01) :1-34
[5]   Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A [J].
Hu, Jun ;
Mathas, Andrew .
ADVANCES IN MATHEMATICS, 2010, 225 (02) :598-642
[6]  
Humphreys J. E., 1992, REFLECTION GROUPS CO, V29
[7]   REPRESENTATIONS OF COXETER GROUPS AND HECKE ALGEBRAS [J].
KAZHDAN, D ;
LUSZTIG, G .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :165-184
[8]   Regarding Soergel's bimodule [J].
Libedinsky, Nicolas .
JOURNAL OF ALGEBRA, 2008, 320 (07) :2675-2694
[9]   Light leaves and Lusztig's conjecture [J].
Libedinsky, Nicolas .
ADVANCES IN MATHEMATICS, 2015, 280 :772-807
[10]  
Plaza D., 2014, ARXIV14102136