Measuring the Rydberg constant using circular Rydberg atoms in an intensity-modulated optical lattice

被引:23
|
作者
Ramos, Andira [1 ]
Moore, Kaitlin [2 ]
Raithel, Georg [1 ,2 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48105 USA
[2] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48105 USA
基金
美国国家科学基金会;
关键词
FUNDAMENTAL PHYSICAL CONSTANTS; CODATA RECOMMENDED VALUES; ENERGY-LEVELS; CESIUM ATOMS; POLARIZATION; ELECTRON; RADIUS; STATES; CORE;
D O I
10.1103/PhysRevA.96.032513
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A method for performing a precision measurement of the Rydberg constant R-infinity using cold circular Rydberg atoms is proposed. These states have long lifetimes as well as negligible quantum electrodynamics and no nuclear-overlap corrections. Due to these advantages, the measurement can help solve the proton radius puzzle [J.C. Bernauer and R. Pohl, Sci. Am. 310, 32 (2014)]. The atoms are trapped using a Rydberg-atom optical lattice and transitions are driven using a recently demonstrated lattice-modulation technique to perform Doppler-free spectroscopy. The circular-state transition frequency yields R-infinity. Laser wavelengths and beam geometries are selected such that the lattice-induced transition shift is minimized. The selected transitions have no first-order Zeeman and Stark corrections, leaving only manageable second-order Zeeman and Stark shifts. For Rb, the projected relative uncertainty of R-infinity in a measurement under the presence of the earth's gravity is 10(-11), with the main contribution coming from the residual lattice shift. This could be reduced in a future microgravity implementation. The next-important systematic uncertainty arises from the Rb+ polarizability (relative-uncertainty contribution of approximate to 3x10(-12)).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] TOWARD A RYDBERG CONSTANT MEASUREMENT ON CIRCULAR ATOMS
    HARE, J
    NUSSENZWEIG, A
    GABBANINI, C
    WEIDEMULLER, M
    GOY, P
    GROSS, M
    HAROCHE, S
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1993, 42 (02) : 331 - 334
  • [2] Trapping Rydberg Atoms in an Optical Lattice
    Anderson, S. E.
    Younge, K. C.
    Raithel, G.
    PHYSICAL REVIEW LETTERS, 2011, 107 (26)
  • [3] Ponderomotive optical lattice for Rydberg atoms
    Dutta, SK
    Guest, JR
    Feldbaum, D
    Walz-Flannigan, A
    Raithel, G
    PHYSICAL REVIEW LETTERS, 2000, 85 (26) : 5551 - 5554
  • [4] Measurement of the Rydberg constant with trapped Rydberg atoms
    Raithel, Georg
    Ramos, Andira
    Moore, Kaitlin
    Malinovsky, Vladimir
    2018 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2018), 2018,
  • [5] Modulation spectroscopy of Rydberg atoms in an optical lattice
    Malinovsky, V. S.
    Moore, K. R.
    Raithel, G.
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [6] Spectroscopy of Rydberg Atoms in a Ponderomotive Optical Lattice
    Anderson, S. E.
    Younge, K. C.
    Raithel, G.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [7] Quantum random walk with Rydberg atoms in an optical lattice
    Cote, Robin
    Russell, Alexander
    Eyler, Edward E.
    Gould, Phillip L.
    NEW JOURNAL OF PHYSICS, 2006, 8
  • [8] Phase diagram of Rydberg atoms in a nonequilibrium optical lattice
    Qian, Jing
    Dong, Guangjiong
    Zhou, Lu
    Zhang, Weiping
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [9] Interacting Circular Rydberg Atoms Trapped in Optical Tweezers
    Mehaignerie, P.
    Machu, Y.
    Hernandez, A. Duran
    Creutzer, G.
    Papoular, D. J.
    Raimond, J. M.
    Sayrin, C.
    Brune, M.
    PRX QUANTUM, 2025, 6 (01):
  • [10] Phases and collective modes of Rydberg atoms in an optical lattice
    Saha, K.
    Sinha, S.
    Sengupta, K.
    PHYSICAL REVIEW A, 2014, 89 (02):