Spline approximation of a random process with singularity

被引:4
作者
Abramowicz, K. [1 ]
Seleznjev, O. [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
基金
瑞典研究理事会;
关键词
Approximation; Random process; Sampling design; Hermite splines; NONLINEAR APPROXIMATION; LINEAR-APPROXIMATION; GAUSSIAN-PROCESSES; SAMPLING DESIGNS;
D O I
10.1016/j.jspi.2010.10.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let a continuous random process X defined on [0,1] be (m+beta)-smooth, 0 <= m,0 < beta <= 1, in quadratic mean for all t > 0 and have an isolated singularity point at t=0. In addition, let X be locally like a m-fold integrated beta-fractional Brownian motion for all nonsingular points. We consider approximation of X by piecewise Hermite interpolation splines with n free knots (i.e., a sampling design, a mesh). The approximation performance is measured by mean errors (e.g., integrated or maximal quadratic mean errors). We construct a sequence of sampling designs with asymptotic approximation rate n(-(m+beta)) for the whole interval. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1333 / 1342
页数:10
相关论文
共 21 条
  • [1] ABRAMOWICZ K, 2008, J NUMER APPL MATH, V96, P1
  • [2] SAMPLING DESIGNS FOR ESTIMATING INTEGRALS OF STOCHASTIC-PROCESSES
    BENHENNI, K
    CAMBANIS, S
    [J]. ANNALS OF STATISTICS, 1992, 20 (01) : 161 - 194
  • [3] SOJOURNS AND EXTREMES OF GAUSSIAN PROCESSES
    BERMAN, SM
    [J]. ANNALS OF PROBABILITY, 1974, 2 (06) : 999 - 1026
  • [4] Bingham N.H., 1989, REGULAR VARIATION
  • [5] BUSLAEV AP, 1999, E J APPROX, V5, P467
  • [6] On the importance of combining wavelet-based nonlinear approximation with coding strategies
    Cohen, A
    Daubechies, I
    Guleryuz, OG
    Orchard, MT
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (07) : 1895 - 1921
  • [7] Nonlinear approximation of random functions
    Cohen, A
    DAles, JP
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (02) : 518 - 540
  • [8] CREUTZIG J, 2006, MONTE CARLO QUASIMON, P195
  • [9] Free-knot spline approximation of stochastic processes
    Creutzig, Jakob
    Mueller-Gronbach, Thomas
    Ritter, Klaus
    [J]. JOURNAL OF COMPLEXITY, 2007, 23 (4-6) : 867 - 889
  • [10] Davis PJ, 1975, INTERPOLATION APPROX