Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data

被引:5
作者
Qian, Fang [1 ]
Chen, Yu [1 ]
Zhang, Weiping [1 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei, Peoples R China
关键词
Banded block structure; Biconvex; Block Cholesky decomposition; High dimensional longitudinal data; Precision matrix; COVARIANCE REGULARIZATION; MODEL SELECTION; CONVERGENCE; REGRESSION; RATES;
D O I
10.1016/j.jmva.2019.104580
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimating covariance matrix is one of the most important analytical tasks in analyzing multivariate longitudinal data, which provides a unique opportunity in studying the joint evolution of multiple response variables over time. This paper introduces a BiConvex Blockwise Regularization (BCBR) sparse estimator for the precision matrix (inverse of the covariance matrix) of high dimensional multivariate longitudinal responses. Using the modified Cholesky block decomposition, we impose a block banded structure on the Cholesky factor and sparsity on the innovation variance matrices via a novel convex hierarchical penalty and lasso penalty, respectively. The blockwise banding structure is a generalization of the existing banding structure for univariate longitudinal data. An efficient alternative convex optimization algorithm is developed by using ADMM algorithm. The resulting estimators are shown to converge in an optimal rate of Frobenius norm, and the exact bandwidth recovery is established for the precision matrix. Simulations and real-life data analysis show that the proposed estimator outperforms its competitors. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 40 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[3]   D-trace estimation of a precision matrix using adaptive Lasso penalties [J].
Avagyan, Vahe ;
Alonso, Andres M. ;
Nogales, Francisco J. .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2018, 12 (02) :425-447
[4]  
Banerjee O, 2008, J MACH LEARN RES, V9, P485
[5]   Regularized estimation of large covariance matrices [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (01) :199-227
[6]   COVARIANCE REGULARIZATION BY THRESHOLDING [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (06) :2577-2604
[7]   Convex Banding of the Covariance Matrix [J].
Bien, Jacob ;
Bunea, Florentina ;
Xiao, Luo .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) :834-845
[8]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[9]   OPTIMAL RATES OF CONVERGENCE FOR COVARIANCE MATRIX ESTIMATION [J].
Cai, T. Tony ;
Zhang, Cun-Hui ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2010, 38 (04) :2118-2144
[10]   ADAPTIVE COVARIANCE MATRIX ESTIMATION THROUGH BLOCK THRESHOLDING [J].
Cai, Tony ;
Yuan, Ming .
ANNALS OF STATISTICS, 2012, 40 (04) :2014-2042