Locally tensor product functions

被引:8
作者
Rabut, C [1 ]
机构
[1] Inst Natl Sci Appl, Dept Genie Math, Lab Math Ind & Phys, UMR 5640, F-31077 Toulouse, France
关键词
tensor product; splines; local refinement;
D O I
10.1007/s11075-004-3646-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present in this paper a family of functions which are tensor product functions in subdomains, while not having the usual drawback of functions which are tensor product functions in the whole domain. With these functions we can add more points in some region without adding points on lines parallel to the axes. These functions are linear combinations of tensor product polynomial B-splines, and the knots of different B-splines are less connected together than with usual polynomial B-splines. Approximation of functions, or data, with such functions gives satisfactory results, as shown by numerical experimentation.
引用
收藏
页码:329 / 348
页数:20
相关论文
共 6 条
[1]  
Apprato D., 1984, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V6, P153, DOI 10.5802/afst.607
[2]  
APPRATO D, 1987, RAIRO-MATH MODEL NUM, V21, P529
[3]   MULTIDIMENSIONAL SPLINE APPROXIMATION [J].
DAHMEN, W ;
DEVORE, R ;
SCHERER, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (03) :380-402
[4]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[5]  
LIGHT W, 2003, CURVE SURFACE FITTIN, P279
[6]  
Schumaker L., 1981, SPLINE FUNCTIONS BAS