Analysis of floating-point round-off error in linear algebra routines for graph clustering

被引:3
作者
Yang, L. Minah [1 ]
Fox, Alyson [2 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
来源
2020 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC) | 2020年
关键词
PRECISION;
D O I
10.1109/hpec43674.2020.9286190
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We explore the various ways rounding errors can impact the power method for calculating the Fielder vector for graph clustering. A rounding error analysis reveals that the best eigenpair that is computable with a certain floating point precision type has a worst-case error that scales to its unit round-off. Although rounding errors can accumulate in the power method at the worst-case bound, this behavior is not reflected in some practical examples. Furthermore, our numerical experiments show that rounding errors from the power method may satisfy the conditions necessary for the bounding of the mis-clustering rate and that the approximate eigenvectors with errors close to half precision unit round-off can yield sufficient clustering results for partitioning stochastic block model graphs.
引用
收藏
页数:7
相关论文
共 15 条
  • [1] Exact Recovery in the Stochastic Block Model
    Abbe, Emmanuel
    Bandeira, Afonso S.
    Hall, Georgina
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (01) : 471 - 487
  • [2] [Anonymous], 2014, Training Deep Neural Networks with Low Precision Multiplications
  • [3] MIXED PRECISION BLOCK FUSED MULTIPLY-ADD: ERROR ANALYSIS AND APPLICATION TO GPU TENSOR CORES
    Blanchard, Pierre
    Higham, Nicholas J.
    Lopez, Florent
    Mary, Theo
    Pranesh, Srikara
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03) : C124 - C141
  • [4] Courbariaux M., 2014, ARXIV PREPRINT ARXIV
  • [5] FIEDLER M, 1973, CZECH MATH J, V23, P298
  • [6] Golub C., 1996, MATRIX COMPUTATIONS
  • [7] SIMULATING LOW PRECISION FLOATING-POINT ARITHMETIC
    Higham, Nicholas J.
    Pranesh, Srikara
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05) : C585 - C602
  • [8] SQUEEZING A MATRIX INTO HALF PRECISION, WITH AN APPLICATION TO SOLVING LINEAR SYSTEMS
    Higham, Nicholas J.
    Pranesh, Srikara
    Zounon, Mawussi
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04) : A2536 - A2551
  • [9] Huang L., 2009, ADV NEURAL INFORM PR, P705
  • [10] Kao E, 2017, IEEE HIGH PERF EXTR