Magnetic structures in a dynamo simulation

被引:191
作者
Brandenburg, A
Jennings, RL
Nordlund, A
Rieutord, M
Stein, RF
Tuominen, I
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
[2] THEORET ASTROPHYS CTR,DK-2100 COPENHAGEN O,DENMARK
[3] COPENHAGEN UNIV OBSERV,DK-1350 COPENHAGEN,DENMARK
[4] OBSERV MIDI PYRENEES,F-31400 TOULOUSE,FRANCE
[5] CERFACS,F-31057 TOULOUSE,FRANCE
[6] MICHIGAN STATE UNIV,DEPT PHYS & ASTRON,E LANSING,MI 48824
[7] UNIV HELSINKI OBSERV,SF-00014 HELSINKI,FINLAND
[8] UNIV OULU,DEPT GEOSCI & ASTRON,SF-90571 OULU,FINLAND
关键词
D O I
10.1017/S0022112096001322
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We use three-dimensional simulations to study compressible convection in a rotating frame with magnetic fields and overshoot into surrounding stable layers. The, initially weak, magnetic field is amplified and maintained by dynamo action and becomes organized into flux tubes that are wrapped around vortex tubes. We also observe vortex buoyancy which causes upward flows in the cores of extended downdraughts. An analysis of the angles between various vector fields shows that there is a tendency for the magnetic field to be parallel or antiparallel to the vorticity vector, especially when the magnetic field is strong. The magnetic energy spectrum has a short inertial range with a slope compatible with k(+1/3) during the early growth phase of the dynamo. During the saturated state the slope is compatible with k(-1). A simple analysis based on various characteristic timescales and energy transfer rates highlights important qualitative ideas regarding the energy budget of hydromagnetic dynamos.
引用
收藏
页码:325 / 352
页数:28
相关论文
共 50 条
[31]   Magnetic structures in ultrathin films and nanostructures:: Simulation [J].
Lévy, JCS ;
Ghazali, A ;
Vedmedenko, EY .
ACTA PHYSICA POLONICA A, 2000, 97 (03) :431-434
[32]   Simulation and optimization of magnetic fluid seal structures [J].
Yang W. ;
Li D. ;
Zhao X. ;
Zhang S. .
Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2010, 30 (01) :80-83
[33]   GRAPHIC VERSION OF SIMULATION LANGUAGE DYNAMO [J].
REESE, B ;
JARSCH, V .
ANGEWANDTE INFORMATIK, 1974, (07) :289-293
[34]   Dynamo simulation and palaeosecular variation models [J].
Kono, M ;
Sakuraba, A ;
Ishida, M .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 358 (1768) :1123-1139
[35]   Numerical simulation of Martian historical dynamo:Impact of the Rayleigh number on the dynamo state [J].
WANG TianYuan KUANG WeiJia MA ShiZhuang Laboratory for Computational Geodynamics Graduate University of Chinese Academy of Sciences Beijing China Planetary Geodynamics Laboratory NASA Goddard Space Flight Center Greenbelt MD USA .
ScienceinChina(SeriesD:EarthSciences), 2009, 52 (03) :402-410
[36]   Numerical simulation of Martian historical dynamo: Impact of the Rayleigh number on the dynamo state [J].
Wang TianYuan ;
Kuang WeiJia ;
Ma ShiZhuang .
SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2009, 52 (03) :402-410
[37]   MHD dynamo simulation using the GeoFEM platform - verification by the dynamo benchmark test [J].
Matsui, H ;
Okuda, H .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2005, 19 (01) :15-22
[38]   Numerical simulation of Martian historical dynamo: Impact of the Rayleigh number on the dynamo state [J].
TianYuan Wang ;
WeiJia Kuang ;
ShiZhuang Ma .
Science in China Series D: Earth Sciences, 2009, 52
[39]   Numerical simulation of Martian historical dynamo:Impact of the Rayleigh number on the dynamo state [J].
WANG TianYuan1 ;
2 Planetary Geodynamics Laboratory .
Science China Earth Sciences, 2009, (03) :402-410
[40]   Magnetic Dynamo action at Low Magnetic Prandtl Numbers [J].
Malyshkin, Leonid M. ;
Boldyrev, Stanislav .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)