Magnetic structures in a dynamo simulation

被引:191
作者
Brandenburg, A
Jennings, RL
Nordlund, A
Rieutord, M
Stein, RF
Tuominen, I
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
[2] THEORET ASTROPHYS CTR,DK-2100 COPENHAGEN O,DENMARK
[3] COPENHAGEN UNIV OBSERV,DK-1350 COPENHAGEN,DENMARK
[4] OBSERV MIDI PYRENEES,F-31400 TOULOUSE,FRANCE
[5] CERFACS,F-31057 TOULOUSE,FRANCE
[6] MICHIGAN STATE UNIV,DEPT PHYS & ASTRON,E LANSING,MI 48824
[7] UNIV HELSINKI OBSERV,SF-00014 HELSINKI,FINLAND
[8] UNIV OULU,DEPT GEOSCI & ASTRON,SF-90571 OULU,FINLAND
关键词
D O I
10.1017/S0022112096001322
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We use three-dimensional simulations to study compressible convection in a rotating frame with magnetic fields and overshoot into surrounding stable layers. The, initially weak, magnetic field is amplified and maintained by dynamo action and becomes organized into flux tubes that are wrapped around vortex tubes. We also observe vortex buoyancy which causes upward flows in the cores of extended downdraughts. An analysis of the angles between various vector fields shows that there is a tendency for the magnetic field to be parallel or antiparallel to the vorticity vector, especially when the magnetic field is strong. The magnetic energy spectrum has a short inertial range with a slope compatible with k(+1/3) during the early growth phase of the dynamo. During the saturated state the slope is compatible with k(-1). A simple analysis based on various characteristic timescales and energy transfer rates highlights important qualitative ideas regarding the energy budget of hydromagnetic dynamos.
引用
收藏
页码:325 / 352
页数:28
相关论文
共 50 条
[21]   MAGNETIC FIELD OF IONOSPHERIC DYNAMO [J].
HALL, SH .
CONTEMPORARY PHYSICS, 1966, 7 (06) :430-&
[22]   Helioseismology, Dynamo, and Magnetic Helicity [J].
Sakurai, Takashi .
PROGRESS IN SOLAR/STELLAR PHYSICS WITH HELIO- AND ASTEROSEISMOLOGY, 2012, 462 :247-260
[23]   Coupled fluid-flow and magnetic-field simulation of the Riga dynamo experiment [J].
Kenjeres, S. ;
Hanjalic, K. ;
Renaudier, S. ;
Stefani, F. ;
Gerbeth, G. ;
Gailitis, A. .
PHYSICS OF PLASMAS, 2006, 13 (12)
[24]   MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI [J].
Yadav, Rakesh K. ;
Christensen, Ulrich R. ;
Wolk, Scott J. ;
Poppenhaeger, Katja .
ASTROPHYSICAL JOURNAL LETTERS, 2016, 833 (02)
[25]   Magnetic helicity and the solar dynamo [J].
Brandenburg, A ;
Blackman, EG .
SOLAR VARIABILITY: FROM CORE TO OUTER FRONTIERS, VOLS 1 & 2, 2002, 506 :805-810
[26]   MAGNETIC BUOYANCY AND THE GALACTIC DYNAMO [J].
HANASZ, M ;
LESCH, H .
ASTRONOMY & ASTROPHYSICS, 1993, 278 (02) :561-568
[27]   Magnetic diffusivity tensor and dynamo [J].
Brandenburg, A. ;
Raedler, K. -H. ;
Rheinhardt, M. ;
Kapyla, P. J. .
ASTROPHYSICAL JOURNAL, 2008, 676 (01) :740-751
[28]   Magnetic Helicity and the Solar Dynamo [J].
Shebalin, John V. .
ENTROPY, 2019, 21 (08)
[29]   Coherent structures and the saturation of a nonlinear dynamo [J].
Rempel, Erico L. ;
Chian, Abraham C. -L. ;
Brandenburg, Axel ;
Munoz, Pablo R. ;
Shadden, Shawn C. .
JOURNAL OF FLUID MECHANICS, 2013, 729 :309-329
[30]   GENERALIZED ENTROPIES IN A TURBULENT DYNAMO SIMULATION [J].
BRANDENBURG, A ;
KLAPPER, I ;
KURTHS, J .
PHYSICAL REVIEW E, 1995, 52 (05) :R4602-R4605