CLT FOR LINEAR SPECTRAL STATISTICS OF HERMITIAN WIGNER MATRICES WITH GENERAL MOMENT CONDITIONS

被引:3
作者
Bao, Z. [1 ]
Xie, J. [2 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310003, Zhejiang, Peoples R China
[2] Henan Univ, Coll Math & Informat Sci, Kaifeng, Peoples R China
关键词
central limit theorem; linear spectral statistics; Hermitian Wigner matrices; CENTRAL-LIMIT-THEOREM; EIGENVALUE STATISTICS; CONVERGENCE;
D O I
10.1137/S0040585X97T987624
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the Hermitian Wigner matrix W-n = (x(ij))(1 <= i, j <= n) with independent (up to symmetry) mean zero variance one entries. Under some Lindeberg type condition on the fourth moments of the entries, we establish a central limit theorem for the linear eigenvalue statistics of W-n. Our result extends the previous results on this topic to a more general case without the assumption Ex(ij)(2) = 0 for 1 <= i < j <= n. Instead, we only assume that the real part and imaginary part of the upper-diagonal entry are uncorrelated. More precisely, we require Ex(ij)(2) to be real and homogeneous for all 1 <= i < j <= n. The limiting normal distribution of the central limit theorem is shown to depend on the parameter Ex(ij)(2) is an element of [-1, 1].
引用
收藏
页码:187 / 206
页数:20
相关论文
共 17 条
[1]   A CLT for a band matrix model [J].
Anderson, GW ;
Zeitouni, O .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (02) :283-338
[2]  
Bai Z.D., 2006, SPECTRAL ANAL LARGE
[3]   On the convergence of the spectral empirical process of Wigner matrices [J].
Bai, ZD ;
Yao, J .
BERNOULLI, 2005, 11 (06) :1059-1092
[4]   NECESSARY AND SUFFICIENT CONDITIONS FOR ALMOST SURE CONVERGENCE OF THE LARGEST EIGENVALUE OF A WIGNER MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1988, 16 (04) :1729-1741
[5]   CLT for Linear Spectral Statistics of Wigner matrices [J].
Bai, Zhidong ;
Wang, Xiaoying ;
Zhou, Wang .
ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 :2391-2417
[6]   Linear functionals of eigenvalues of random matrices [J].
Diaconis, P ;
Evans, SN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (07) :2615-2633
[7]  
Guhr T., 1998, Physics Reports, V299, P189, DOI 10.1016/S0370-1573(97)00088-4
[8]   On fluctuations of eigenvalues of random hermitian matrices [J].
Johansson, K .
DUKE MATHEMATICAL JOURNAL, 1998, 91 (01) :151-204
[10]   CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES [J].
Lytova, A. ;
Pastur, L. .
ANNALS OF PROBABILITY, 2009, 37 (05) :1778-1840