Lieb-Robinson Bound and Almost-Linear Light Cone in Interacting Boson Systems

被引:30
作者
Kuwahara, Tomotaka [1 ]
Saito, Keiji [2 ]
机构
[1] RIKEN Ctr, Adv Intelligence Project AIP, Math Sci Team, Chuo Ku, I-4-1 Nihonbashi, Tokyo 1030027, Japan
[2] Keio Univ, Dept Phys, Yokohama, Kanagawa 2238522, Japan
关键词
QUANTUM; DYNAMICS;
D O I
10.1103/PhysRevLett.127.070403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we investigate how quickly local perturbations propagate in interacting boson systems with Bose-Hubbard-type Hamiltonians. In general, these systems have unbounded local energies, and arbitrarily fast information propagation may occur. We focus on a specific but experimentally natural situation in which the number of bosons at any one site in the unperturbed initial state is approximately limited. We rigorously prove the existence of an almost-linear information-propagation light cone, thus establishing a Lieb-Robinson bound: the wave front grows at most as t log(2) (t). We prove the clustering theorem for gapped ground states and study the time complexity of classically simulating one-dimensional quench dynamics, a topic of great practical interest.
引用
收藏
页数:8
相关论文
共 97 条
[1]   Propagation of a single-hole defect in the one-dimensional Bose-Hubbard model [J].
Andraschko, F. ;
Sirker, J. .
PHYSICAL REVIEW B, 2015, 91 (23)
[2]   Connecting global and local energy distributions in quantum spin models on a lattice [J].
Arad, Itai ;
Kuwahara, Tomotaka ;
Landau, Zeph .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[3]   Adiabatic Theorem for Quantum Spin Systems [J].
Bachmann, S. ;
De Roeck, W. ;
Fraas, M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (06)
[4]   Extended Bose-Hubbard models with ultracold magnetic atoms [J].
Baier, S. ;
Mark, M. J. ;
Petter, D. ;
Aikawa, K. ;
Chomaz, L. ;
Cai, Z. ;
Baranov, M. ;
Zoller, P. ;
Ferlaino, F. .
SCIENCE, 2016, 352 (6282) :201-205
[5]   Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom Level [J].
Bakr, W. S. ;
Peng, A. ;
Tai, M. E. ;
Ma, R. ;
Simon, J. ;
Gillen, J. I. ;
Foelling, S. ;
Pollet, L. ;
Greiner, M. .
SCIENCE, 2010, 329 (5991) :547-550
[6]   Propagation front of correlations in an interacting Bose gas [J].
Barmettler, Peter ;
Poletti, Dario ;
Cheneau, Marc ;
Kollath, Corinna .
PHYSICAL REVIEW A, 2012, 85 (05)
[7]   Light-Cone and Diffusive Propagation of Correlations in a Many-Body Dissipative System [J].
Bernier, Jean-Sebastien ;
Tan, Ryan ;
Bonnes, Lars ;
Guo, Chu ;
Poletti, Dario ;
Kollath, Corinna .
PHYSICAL REVIEW LETTERS, 2018, 120 (02)
[8]   Correlation Dynamics During a Slow Interaction Quench in a One-Dimensional Bose Gas [J].
Bernier, Jean-Sebastien ;
Citro, Roberta ;
Kollath, Corinna ;
Orignac, Edmond .
PHYSICAL REVIEW LETTERS, 2014, 112 (06)
[9]   Slow quench dynamics of Mott-insulating regions in a trapped Bose gas [J].
Bernier, Jean-Sebastien ;
Poletti, Dario ;
Barmettler, Peter ;
Roux, Guillaume ;
Kollath, Corinna .
PHYSICAL REVIEW A, 2012, 85 (03)
[10]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964