A nonconforming hydroelastic triangle for ice shelf modal analysis

被引:6
作者
Papathanasiou, T. K. [1 ]
Belibassakis, K. A. [2 ]
机构
[1] Brunel Univ London, Dept Civil & Environm Engn, Uxbridge UB8 3PH, Middx, England
[2] Natl Tech Univ Athens, Sch Naval Architecture & Marine Engn, GR-15773 Zografos, Greece
关键词
Nonconforming elements; Hydroelastic finite elements; Modal analysis; Ice shelves; Hydroelastic resonances; GRAVITY-WAVES; NORMAL-MODES; ANTARCTICA; TONGUE;
D O I
10.1016/j.jfluidstructs.2019.102741
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Hydroelastic oscillations of ice shelves, induced by the action of ocean waves, produce deflection and stresses that could potentially lead to calving events. Due to the large horizontal span of several Antarctic ice shelves, like the Ross, Ronne or Larsen C, hydroelastic models for the ice shelf/ice shelf cavity configuration based on long wave approximations can be very effective. Such a model, based on the linearised Shallow Water Equations and the Kirchhoff-Love bending theory for slender plates is considered. For ice shelf modal analysis, in the framework of the specific model, a nonconforming hydroelastic finite element is developed. The new hydroelastic triangle is based on coupling Specht's plate element with a linear triangle for the velocity potential approximation. It enables explicit computation of the hydroelastic coupling matrix and optimal convergence rates for the eigenpairs. The element efficiency is verified against a semi-analytical solution and the theoretically predicted convergence rates are validated for solutions with sufficient regularity. The SHEEL element (Specht HydroElastic ELement) can be used for cases of variable bathymetry and mild variations of the ice shelf thickness. The same element can be employed for time domain hydroelastic analysis with very slight modifications. A model of the Larsen C ice shelf is considered as a case study. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:23
相关论文
共 44 条
[1]  
[Anonymous], 2002, FINITE ELEMENT METHO
[2]   Calving and rifting on the McMurdo Ice Shelf, Antarctica [J].
Banwell, Alison F. ;
Willis, Ian C. ;
Macdonald, Grant J. ;
Goodsell, Becky ;
Mayer, David P. ;
Powell, Anthony ;
Macayeal, Douglas R. .
ANNALS OF GLACIOLOGY, 2017, 58 (75) :78-87
[3]   A coupled-mode model for the hydroelastic analysis of large floating bodies over variable bathymetry regions [J].
Belibassakis, KA ;
Athanassoulis, GA .
JOURNAL OF FLUID MECHANICS, 2005, 531 :221-249
[4]   Tsunami and infragravity waves impacting Antarctic ice shelves [J].
Bromirski, P. D. ;
Chen, Z. ;
Stephen, R. A. ;
Gerstoft, P. ;
Arcas, D. ;
Diez, A. ;
Aster, R. C. ;
Wiens, D. A. ;
Nyblade, A. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (07) :5786-5801
[5]   Response of the Ross Ice Shelf, Antarctica, to ocean gravity-wave forcing [J].
Bromirski, Peter D. ;
Stephen, Ralph A. .
ANNALS OF GLACIOLOGY, 2012, 53 (60) :163-172
[6]   Transoceanic infragravity waves impacting Antarctic ice shelves [J].
Bromirski, Peter D. ;
Sergienko, Olga V. ;
MacAyeal, Douglas R. .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[7]   Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011 [J].
Brunt, Kelly M. ;
Okal, Emile A. ;
MacAyeal, Douglas R. .
JOURNAL OF GLACIOLOGY, 2011, 57 (205) :785-788
[8]   Lidar observations of persistent gravity waves with periods of 3-10h in the Antarctic middle and upper atmosphere at McMurdo (77.83°S, 166.67°E) [J].
Chen, Cao ;
Chu, Xinzhao ;
Zhao, Jian ;
Roberts, Brendan R. ;
Yu, Zhibin ;
Fong, Weichun ;
Lu, Xian ;
Smith, John A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (02) :1483-1502
[9]   Two Simple Triangular Plate Elements Based on the Absolute Nodal Coordinate Formulation [J].
Dmitrochenko, Oleg ;
Mikkola, Aki .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2008, 3 (04)
[10]   Bedmap2: improved ice bed, surface and thickness datasets for Antarctica [J].
Fretwell, P. ;
Pritchard, H. D. ;
Vaughan, D. G. ;
Bamber, J. L. ;
Barrand, N. E. ;
Bell, R. ;
Bianchi, C. ;
Bingham, R. G. ;
Blankenship, D. D. ;
Casassa, G. ;
Catania, G. ;
Callens, D. ;
Conway, H. ;
Cook, A. J. ;
Corr, H. F. J. ;
Damaske, D. ;
Damm, V. ;
Ferraccioli, F. ;
Forsberg, R. ;
Fujita, S. ;
Gim, Y. ;
Gogineni, P. ;
Griggs, J. A. ;
Hindmarsh, R. C. A. ;
Holmlund, P. ;
Holt, J. W. ;
Jacobel, R. W. ;
Jenkins, A. ;
Jokat, W. ;
Jordan, T. ;
King, E. C. ;
Kohler, J. ;
Krabill, W. ;
Riger-Kusk, M. ;
Langley, K. A. ;
Leitchenkov, G. ;
Leuschen, C. ;
Luyendyk, B. P. ;
Matsuoka, K. ;
Mouginot, J. ;
Nitsche, F. O. ;
Nogi, Y. ;
Nost, O. A. ;
Popov, S. V. ;
Rignot, E. ;
Rippin, D. M. ;
Rivera, A. ;
Roberts, J. ;
Ross, N. ;
Siegert, M. J. .
CRYOSPHERE, 2013, 7 (01) :375-393