Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space

被引:349
作者
Censor, Yair [1 ]
Gibali, Aviv [2 ]
Reich, Simeon [2 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
extragradient method; Hilbert space; projection algorithm; subgradient; variational inequality; NONEXPANSIVE-MAPPINGS; PROJECTION ALGORITHMS; APPROXIMATIONS; OPTIMIZATION;
D O I
10.1080/10556788.2010.551536
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study two projection algorithms for solving the variational inequality problem in Hilbert space. One algorithm is a modified subgradient extragradient method in which an additional projection onto the intersection of two half-spaces is employed. Another algorithm is based on the shrinking projection method. We establish strong convergence theorems for both algorithms.
引用
收藏
页码:827 / 845
页数:19
相关论文
共 27 条
[1]  
[Anonymous], 2003, SPRINGER SERIES OPER, DOI DOI 10.1007/978-0-387-21815-16
[2]   A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space [J].
Bauschke, Heinz H. ;
Combettes, Patrick L. ;
Luke, D. Russell .
JOURNAL OF APPROXIMATION THEORY, 2006, 141 (01) :63-69
[3]   Construction of best Bregman approximations in reflexive Banach spaces [J].
Bauschke, HH ;
Combettes, PL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) :3757-3766
[4]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[5]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[6]   An outer approximation method for the variational inequality problem [J].
Burachik, RS ;
Lopes, JO ;
Svaiter, BF .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (06) :2071-2088
[7]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[8]  
Censor Y., OPTIMIZATIO IN PRESS
[10]   Strong convergence of block-iterative outer approximation methods for convex optimization [J].
Combettes, PL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :538-565