Parametric analysis of achievable signal-to-noise ratio of a full-waveform space-based backscatter lidar

被引:1
作者
Tcherniavski, Iouri
Dudelzak, Alexander [1 ]
Koujelev, Alexander [1 ]
机构
[1] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
RADIATIVE-TRANSFER; DISCONTINUOUS CANOPIES; ASYMMETRIC CROWNS; TRANSFER MODEL; VEGETATION; AIRBORNE; PROPAGATION; SCATTERING; DESIGN;
D O I
10.1080/01431161.2011.568532
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Performance analysis of a space-based backscatter lidar for structural measurements of ground vegetation has been undertaken with the purpose of developing a computer tool for the lidar-system simulation/trade-off studies. A realistically achievable system's signal-to-noise ratio (SNR) has been estimated. The developed mathematical model describing the end-to-end return pulse propagation takes into account signal-and noise-affecting factors such as laser-beam scattering on the target canopy, atmospheric scattering and the background solar radiation. Spatial full-waveform resolution requirements for retrieving canopy's architecture are evaluated based on canopy structural models. The analysis concept allows to parametrically trade-off system simulation variables such as orbit altitude, laser pulse width, beam footprints, divergence, apertures of transmitting and receiving optics.
引用
收藏
页码:1360 / 1382
页数:23
相关论文
共 39 条
[1]   Lidar design, use, and calibration concepts for correct environmental detection [J].
Adams, MD .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2000, 16 (06) :753-761
[2]  
Andrews L. C., 1998, Laser Beam Propagation through Random Media
[3]  
[Anonymous], 2004, J GEOPHYS RES ATMOS, DOI DOI 10.1029/2003JD004252
[4]   Airborne laser scanning: basic relations and formulas [J].
Baltsavias, EP .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1999, 54 (2-3) :199-214
[5]  
Beland R. R., 1993, Atmospheric Propag. Radiat., P157
[6]   MODTRAN4 radiative transfer modeling for atmospheric correction [J].
Berk, A ;
Anderson, GP ;
Bernstein, LS ;
Acharya, PK ;
Dothe, H ;
Matthew, MW ;
Adler-Golden, SM ;
Chetwynd, JH ;
Richtsmeier, SC ;
Pukall, B ;
Allred, CL ;
Jeong, LS ;
Hoke, ML .
OPTICAL SPECTROSCOPIC TECHNIQUES AND INSTRUMENTATION FOR ATMOSPHERIC AND SPACE RESEARCH III, 1999, 3756 :348-353
[7]   The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography [J].
Blair, JB ;
Rabine, DL ;
Hofton, MA .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1999, 54 (2-3) :115-122
[8]   A simulation approach for airborne DIAL systems [J].
Boerner, Anko ;
Kiemle, Christoph ;
Wirth, Martin .
LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING II, 2006, 6367
[9]   Regional aboveground forest biomass using airborne and spaceborne LiDAR in Quebec [J].
Boudreau, Jonathan ;
Nelson, Ross F. ;
Margolis, Hank A. ;
Beaudoin, Andre ;
Guindon, Luc ;
Kimes, Daniel S. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (10) :3876-3890
[10]   Elastic LADAR modeling for synthetic imaging applications [J].
Burton, RR ;
Schott, JR ;
Brown, SD .
IMAGING SPECTROMETRY VIII, 2002, 4816 :144-155