Hyperspectral Image Denoising Using Spectral-Spatial Transform-Based Sparse and Low-Rank Representations

被引:26
作者
Zhao, Bin [1 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
Chanussot, Jocelyn [2 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
[2] Univ Grenoble Alpes, GIPSA Lab, Grenoble INP, CNRS, F-38000 Grenoble, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Noise reduction; Discrete wavelet transforms; Wavelet domain; Convex functions; Solid modeling; Minimization; Discrete cosine transforms; Denoising; hyperspectral image; low rank; orthogonal transform; sparse; WEIGHTED NUCLEAR NORM; NOISE REMOVAL; REGULARIZATION; REDUCTION;
D O I
10.1109/TGRS.2022.3142988
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article proposes a denoising method based on sparse spectral & x2013;spatial and low-rank representations (SSSLRR) using the 3-D orthogonal transform (3-DOT). SSSLRR can be effectively used to remove the Gaussian and mixed noise. SSSLRR uses 3-DOT to decompose noisy HSI to sparse transform coefficients. The 3-D discrete orthogonal wavelet transform (3-D DWT) is a representative 3-DOT suitable for denoising since it concentrates on the signal in few transform coefficients, and the 3-D discrete orthogonal cosine transform (3-D DCT) is another example. An SSSLRR using 3-D DWT will be called SSSLRR-DWT. SSSLRR-DWT is an iterative algorithm based on the alternating direction method of multipliers (ADMM) that uses sparse and nuclear norm penalties. We use an ablation study to show the effectiveness of the penalties we employ in the method. Both simulated and real hyperspectral datasets demonstrate that SSSLRR outperforms other comparative methods in quantitative and visual assessments to remove the Gaussian and mixed noise.
引用
收藏
页数:25
相关论文
共 62 条
[1]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[2]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[3]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[4]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[5]   Hyperspectral Image Denoising via Subspace-Based Nonlocal Low-Rank and Sparse Factorization [J].
Cao, Chunhong ;
Yu, Jie ;
Zhou, Chengyao ;
Hu, Kai ;
Xiao, Fen ;
Gao, Xieping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (03) :973-988
[6]   Spatially adaptive wavelet thresholding with context modeling for image denoising [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1522-1531
[7]   HSI-DeNet: Hyperspectral Image Restoration via Convolutional Neural Network [J].
Chang, Yi ;
Yan, Luxin ;
Fang, Houzhang ;
Zhong, Sheng ;
Liao, Wenshan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02) :667-682
[8]   Simultaneous Destriping and Denoising for Remote Sensing Images With Unidirectional Total Variation and Sparse Representation [J].
Chang, Yi ;
Yan, Luxin ;
Fang, Houzhang ;
Liu, Hai .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (06) :1051-1055
[9]  
Chen G., 2014, IEEE T GEOSCI ELECT, V49, P973
[10]   Hyperspectral Imagery Denoising Using a Spatial-Spectral Domain Mixing Prior [J].
Chen, Shao-Lin ;
Hu, Xi-Yuan ;
Peng, Si-Long .
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2012, 27 (04) :851-861