On optimal 4-dimensional metrics

被引:13
作者
LeBrun, Claude [1 ]
Maskit, Bernard [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
4-manifold; anti-self-dual metric; scalar curvature; Kleinian group;
D O I
10.1007/s12220-008-9019-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We completely determine, up to homeomorphism, which simply connected compact oriented 4-manifolds admit scalar- flat, anti-self-dual Riemannian metrics. The key new ingredient is a proof that the connected sum (CP) over bar (2)# (CP) over bar (2)# (CP) over bar (2)# (CP) over bar (2)# (CP) over bar (2) of five reverse-oriented complex projective planes admits such metrics.
引用
收藏
页码:537 / 564
页数:28
相关论文
共 47 条
[1]   RIEMANNS MAPPING THEOREM FOR VARIABLE METRICS [J].
AHLFORS, L ;
BERS, L .
ANNALS OF MATHEMATICS, 1960, 72 (02) :385-404
[2]  
[Anonymous], 1978, Principles of algebraic geometry
[3]   SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY [J].
ATIYAH, MF ;
HITCHIN, NJ ;
SINGER, IM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711) :425-461
[4]  
Barth W., 1984, COMPACT COMPLEX SURF
[5]  
Berger M, 2000, Riemannian Geometry During the Second Half of the Twentieth Century
[6]   ON BOUNDARIES OF TEICHMULLER SPACES AND ON KLEINIAN GROUPS .1. [J].
BERS, L .
ANNALS OF MATHEMATICS, 1970, 91 (03) :570-&
[7]   Hausdorff dimension and Kleinian groups [J].
Bishop, CJ ;
Jones, PW .
ACTA MATHEMATICA, 1997, 179 (01) :1-39
[8]   Einstein metrics and complex singularities [J].
Calderbank, DMJ ;
Singer, MA .
INVENTIONES MATHEMATICAE, 2004, 156 (02) :405-443
[9]  
CHEN X, 2007, ARXIV07050710
[10]   ON SCHOTTKY GROUPS WITH APPLICATIONS TO KLEINIAN GROUPS [J].
CHUCKROW, V .
ANNALS OF MATHEMATICS, 1968, 88 (01) :47-&