Global existence for semilinear reaction-diffusion systems on evolving domains

被引:21
作者
Venkataraman, Chandrasekhar [1 ]
Lakkis, Omar [1 ]
Madzvamuse, Anotida [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
Reaction-diffusion systems; Global existence; Evolving domains; Biological pattern formation; GROWING DOMAINS; PATTERNS;
D O I
10.1007/s00285-011-0404-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present global existence results for solutions of reaction-diffusion systems on evolving domains. Global existence results for a class of reaction-diffusion systems on fixed domains are extended to the same systems posed on spatially linear isotropically evolving domains. The results hold without any assumptions on the sign of the growth rate. The analysis is valid for many systems that commonly arise in the theory of pattern formation. We present numerical results illustrating our theoretical findings.
引用
收藏
页码:41 / 67
页数:27
相关论文
共 30 条
[1]  
Acheson D. J., 1990, ELEMENTARY FLUID DYN, DOI [10.1121/1.400751, DOI 10.1121/1.400751]
[2]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[3]  
[Anonymous], 2008, STABILIZING EFFECT G
[4]  
Baines M. J., 1994, Moving Finite Elements
[5]   Mode transitions in a model reaction-diffusion system driven by domain growth and noise [J].
Barrass, Iain ;
Crampin, Edmund J. ;
Maini, Philip K. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (05) :981-995
[6]   Mathematical Analysis and Pattern Formation for a Partial Immune System Modeling the Spread of an Epidemic Disease [J].
Bendahmane, Mostafa ;
Saad, Mazen .
ACTA APPLICANDAE MATHEMATICAE, 2011, 115 (01) :17-42
[7]   Patterns on growing square domains via mode interactions [J].
Comanici, Adela ;
Golubitsky, Martin .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2008, 23 (02) :167-206
[8]   Mode-doubling and tripling in reaction-diffusion patterns on growing domains: A piecewise linear model [J].
Crampin, EJ ;
Gaffney, EA ;
Maini, PK .
JOURNAL OF MATHEMATICAL BIOLOGY, 2002, 44 (02) :107-128
[9]   Reaction and diffusion on growing domains: Scenarios for robust pattern formation [J].
Crampin, EJ ;
Gaffney, EA ;
Maini, PK .
BULLETIN OF MATHEMATICAL BIOLOGY, 1999, 61 (06) :1093-1120
[10]  
Garvie Marcus R., 2010, Journal of Biological Dynamics, V4, P559, DOI 10.1080/17513750903484321