SuperMix: Supervising the Mixing Data Augmentation

被引:70
作者
Dabouei, Ali [1 ]
Soleymani, Sobhan [1 ]
Taherkhani, Fariborz [1 ]
Nasrabadi, Nasser M. [1 ]
机构
[1] West Virginia Univ, Morgantown, WV 26506 USA
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
D O I
10.1109/CVPR46437.2021.01358
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a supervised mixing augmentation method termed SuperMix, which exploits the salient regions within input images to construct mixed training samples. SuperMix is designed to obtain mixed images rich in visual features and complying with realistic image priors. To enhance the efficiency of the algorithm, we develop a variant of the Newton iterative method, 65x faster than gradient descent on this problem. We validate the effectiveness of SuperMix through extensive evaluations and ablation studies on two tasks of object classification and knowledge distillation. On the classification task, SuperMix provides comparable performance to the advanced augmentation methods, such as AutoAugment and RandAugment. In particular, combining SuperMix with RandAugment achieves 78.2% top-1 accuracy on ImageNet with ResNet50. On the distillation task, solely classifying images mixed using the teacher's knowledge achieves comparable performance to the state-of-the-art distillation methods. Furthermore, on average, incorporating mixed images into the distillation objective improves the performance by 3.4% and 3.1% on CIFAR-100 and ImageNet, respectively. The code is available at https://github.com/alldbi/SuperMix.
引用
收藏
页码:13789 / 13798
页数:10
相关论文
共 35 条
[1]  
[Anonymous], sampled Variant of ImageNet as an Alternative to the CIFAR
[2]  
Bucilua Cristian, 2006, P 12 ACM SIGKDD INT, P535
[3]   NEIL: Extracting Visual Knowledge from Web Data [J].
Chen, Xinlei ;
Shrivastava, Abhinav ;
Gupta, Abhinav .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :1409-1416
[4]   Randaugment: Practical automated data augmentation with a reduced search space [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Shlens, Jonathon ;
Le, Quoc, V .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :3008-3017
[5]   AutoAugment: Learning Augmentation Strategies from Data [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Mane, Dandelion ;
Vasudevan, Vijay ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :113-123
[6]  
Dabkowski P, 2017, ADV NEUR IN, V30
[7]  
Dabouei Ali, 2019, ARXIV191003624
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]  
DeVries Terrance, 2017, Improved regulariza
[10]   Interpretable Explanations of Black Boxes by Meaningful Perturbation [J].
Fong, Ruth C. ;
Vedaldi, Andrea .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :3449-3457