The spherical p-harmonic eigenvalue problem in non-smooth domains

被引:4
作者
Gkikas, Konstantinos T. [1 ]
Veron, Laurent [2 ]
机构
[1] Univ Chile, Ctr Modelamiento Matemat, CNRS, UMI 2807, Casilla 170,Correo 3, Santiago, Chile
[2] Univ Tours, Fac Sci, CNRS, Lab Math & Phys Theor,UMR 7350, F-37200 Tours, France
关键词
p-Laplacian operator; Polar sets; Boundary Harnack inequality; p-Martin boundary; SINGULAR SOLUTIONS; LIPSCHITZ-DOMAINS; BOUNDARY-BEHAVIOR; EQUATIONS;
D O I
10.1016/j.jfa.2017.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of p-harmonic functions under the form u(r, sigma) = r(-beta)omega(sigma) in any cone C-S generated by a spherical domain S and vanishing on partial derivative C-S. We prove the uniqueness of the exponent beta and of the normalized function omega under a Lipschitz condition on S. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:1155 / 1176
页数:22
相关论文
共 14 条
[1]  
[Anonymous], 1999, GRUNDLEHREN MATH WIS
[2]  
Boccardo L., 1984, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V11, P213
[3]  
FRIEDMAN A, 1986, ARCH RATION MECH AN, V96, P359
[4]   SINGULAR SOLUTIONS OF THE P-LAPLACE EQUATION [J].
KICHENASSAMY, S ;
VERON, L .
MATHEMATISCHE ANNALEN, 1986, 275 (04) :599-615
[5]  
Krol N., 1973, P STEKLOV I MATH, V125, P140
[6]   Applications of Boundary Harnack Inequalities for p Harmonic Functions and Related Topics [J].
Lewis, J. .
REGULARITY ESTIMATES FOR NONLINEAR ELLIPTIC AND PARABOLIC PROBLEMS: CETRARO, ITALY 2009, 2012, 2045 :1-72
[7]   Boundary behavior and the Martin boundary problem for p harmonic functions in Lipschitz domains [J].
Lewis, John ;
Nystrom, Kaj .
ANNALS OF MATHEMATICS, 2010, 172 (03) :1907-1948
[8]  
Lewis JL, 2011, PURE APPL MATH Q, V7, P345
[9]   Boundary behaviour of p-harmonic functions in domains beyond Lipschitz domains [J].
Lewis, John L. ;
Nystrom, Kaj .
ADVANCES IN CALCULUS OF VARIATIONS, 2008, 1 (02) :133-170
[10]  
Lindqvist P., 2006, REP U JYVFISKYLA DEP, V102