The spherical p-harmonic eigenvalue problem in non-smooth domains

被引:4
|
作者
Gkikas, Konstantinos T. [1 ]
Veron, Laurent [2 ]
机构
[1] Univ Chile, Ctr Modelamiento Matemat, CNRS, UMI 2807, Casilla 170,Correo 3, Santiago, Chile
[2] Univ Tours, Fac Sci, CNRS, Lab Math & Phys Theor,UMR 7350, F-37200 Tours, France
关键词
p-Laplacian operator; Polar sets; Boundary Harnack inequality; p-Martin boundary; SINGULAR SOLUTIONS; LIPSCHITZ-DOMAINS; BOUNDARY-BEHAVIOR; EQUATIONS;
D O I
10.1016/j.jfa.2017.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of p-harmonic functions under the form u(r, sigma) = r(-beta)omega(sigma) in any cone C-S generated by a spherical domain S and vanishing on partial derivative C-S. We prove the uniqueness of the exponent beta and of the normalized function omega under a Lipschitz condition on S. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:1155 / 1176
页数:22
相关论文
共 31 条