Pumice Raft Detection Using Machine-Learning on Multispectral Satellite Imagery

被引:3
|
作者
Zheng, Maggie [1 ]
Mittal, Tushar [1 ]
Fauria, Kristen E. [2 ]
Subramaniam, Ajit [3 ]
Jutzeler, Martin [4 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[2] Vanderbilt Univ, Dept Earth & Environm Sci, Nashville, TN USA
[3] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA
[4] Univ Tasmania, Ctr Ore Deposit & Earth Sci CODES, Hobart, Tas, Australia
关键词
submarine volcano monitoring; pumice raft dispersal; machine learning (ML); sentinel-2; Google Earth engine (GEE); VOLCANIC ASH RESUSPENSION; LOISELS PUMICE; SUBMARINE ERUPTION; ISLAND; SEDIMENTOLOGY; ORGANISMS; NORTHERN; COLOR;
D O I
10.3389/feart.2022.838532
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Most of Earth's volcanic eruptions occur underwater, and these submarine eruptions can significantly impact large-scale Earth systems (e.g., enhancing local primary production by phytoplankton). However, detecting submarine eruptions is challenging due to their remote locations, short eruption durations, lack of sea surface signature (if eruptions do not breach the surface), and the transient nature of the surface manifestations of an eruption (e.g., floating pumice clasts, hydrothermal fluids). We can utilize global satellite imagery of 10-30 m resolution (e.g., Landsat 8, Sentinel-2) to detect new eruptions; however, the large data volumes make it challenging to systematically analyze satellite imagery globally. In this study, we address these challenges by developing a new semi-automated analysis framework to detect submarine eruptions through supervised classification of satellite images on Google Earth Engine. We train our algorithm using images from rafts produced by the August 2019 eruption of Volcano F in the Tofua Arc and present a case study using our methodology on satellite imagery from the Rabaul caldera region in Papua New Guinea. We potentially find a large number of new unreported pumice rafts (in similar to 16% of images from 2017-present). After analysis of the spatial pattern of raft sightings and ancillary geophysical and visual observations, we interpret that these rafts are not the result of a new eruption. Instead, we posit that the observed rafts represent remobilization of pumice clasts from previous historical eruptions. This novel process of raft remobilization may be common at near-shore/partially submarine caldera systems (e.g., Rabaul, Krakatau) and may have significant implications for new submarine eruption detection and volcanic stratigraphy.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Crop Classification of Satellite Imagery Using Synthetic Multitemporal and Multispectral Images in Convolutional Neural Networks
    Siesto, Guillermo
    Fernandez-Sellers, Marcos
    Lozano-Tello, Adolfo
    REMOTE SENSING, 2021, 13 (17)
  • [22] Leaf Nitrogen Concentration and Plant Height Prediction for Maize Using UAV-Based Multispectral Imagery and Machine Learning Techniques
    Osco, Lucas Prado
    Marcato Junior, Jose, Jr.
    Marques Ramos, Ana Paula
    Garcia Furuya, Danielle Elis
    Santana, Dthenifer Cordeiro
    Ribeiro Teodoro, Larissa Pereira
    Goncalves, Wesley Nunes
    Rojo Baio, Fabio Henrique
    Pistori, Hemerson
    da Silva Junior, Carlos Antonio, Jr.
    Teodoro, Paulo Eduardo
    REMOTE SENSING, 2020, 12 (19) : 1 - 17
  • [23] Enhancing the Performance of Photonic Sensor Using Machine-Learning Approach
    Dwivedi, Yogendra Swaroop
    Singh, Rishav
    Sharma, Anuj K.
    Sharma, Ajay Kumar
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2320 - 2327
  • [24] MAPPING SLUMS FROM SATELLITE IMAGERY USING DEEP LEARNING
    Raj, Anjali
    Agrawal, Shubham
    Mitra, Adway
    Sinha, Manjira
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6584 - 6587
  • [25] Mapping agricultural tile drainage in the US Midwest using explainable random forest machine learning and satellite imagery
    Wan, Luwen
    Kendall, Anthony D.
    Rapp, Jeremy
    Hyndman, David W.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 950
  • [26] A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures
    Tran-Ngoc, H.
    Khatir, S.
    Le-Xuan, T.
    De Roeck, G.
    Bui-Tien, T.
    Wahab, M. Abdel
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2020, 157
  • [27] Monitoring saltwater intrusion to estuaries based on UAV and satellite imagery with machine learning models
    Jiang, Dingshen
    Dong, Chunyu
    Ma, Zhimin
    Wang, Xianwei
    Lin, Kairong
    Yang, Fang
    Chen, Xiaohong
    REMOTE SENSING OF ENVIRONMENT, 2024, 308
  • [28] IMPROVING URBAN TREE SPECIES CLASSIFICATION WITH HIGH RESOLUTION SATELLITE IMAGERY AND MACHINE LEARNING
    Wenger, Romain
    Bressant, Clement
    Roettele, Lucie
    Forestier, Germain
    Puissant, Anne
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 4679 - 4682
  • [29] Improved Forest Canopy Closure Estimation Using Multispectral Satellite Imagery within Google Earth Engine
    Xie, Bo
    Cao, Chunxiang
    Xu, Min
    Yang, Xinwei
    Duerler, Robert Shea
    Bashir, Barjeece
    Huang, Zhibin
    Wang, Kaimin
    Chen, Yiyu
    Guo, Heyi
    REMOTE SENSING, 2022, 14 (09)
  • [30] DEEP LEARNING FOR THE DETECTION OF EARLY SIGNS FOR FOREST DAMAGE BASED ON SATELLITE IMAGERY
    Wittich, Dennis
    Rottensteiner, Franz
    Voelsen, Mirjana
    Heipke, Christian
    Mueller, Soenke
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 5-2 : 307 - 315