Pumice Raft Detection Using Machine-Learning on Multispectral Satellite Imagery

被引:2
|
作者
Zheng, Maggie [1 ]
Mittal, Tushar [1 ]
Fauria, Kristen E. [2 ]
Subramaniam, Ajit [3 ]
Jutzeler, Martin [4 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[2] Vanderbilt Univ, Dept Earth & Environm Sci, Nashville, TN USA
[3] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA
[4] Univ Tasmania, Ctr Ore Deposit & Earth Sci CODES, Hobart, Tas, Australia
关键词
submarine volcano monitoring; pumice raft dispersal; machine learning (ML); sentinel-2; Google Earth engine (GEE); VOLCANIC ASH RESUSPENSION; LOISELS PUMICE; SUBMARINE ERUPTION; ISLAND; SEDIMENTOLOGY; ORGANISMS; NORTHERN; COLOR;
D O I
10.3389/feart.2022.838532
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Most of Earth's volcanic eruptions occur underwater, and these submarine eruptions can significantly impact large-scale Earth systems (e.g., enhancing local primary production by phytoplankton). However, detecting submarine eruptions is challenging due to their remote locations, short eruption durations, lack of sea surface signature (if eruptions do not breach the surface), and the transient nature of the surface manifestations of an eruption (e.g., floating pumice clasts, hydrothermal fluids). We can utilize global satellite imagery of 10-30 m resolution (e.g., Landsat 8, Sentinel-2) to detect new eruptions; however, the large data volumes make it challenging to systematically analyze satellite imagery globally. In this study, we address these challenges by developing a new semi-automated analysis framework to detect submarine eruptions through supervised classification of satellite images on Google Earth Engine. We train our algorithm using images from rafts produced by the August 2019 eruption of Volcano F in the Tofua Arc and present a case study using our methodology on satellite imagery from the Rabaul caldera region in Papua New Guinea. We potentially find a large number of new unreported pumice rafts (in similar to 16% of images from 2017-present). After analysis of the spatial pattern of raft sightings and ancillary geophysical and visual observations, we interpret that these rafts are not the result of a new eruption. Instead, we posit that the observed rafts represent remobilization of pumice clasts from previous historical eruptions. This novel process of raft remobilization may be common at near-shore/partially submarine caldera systems (e.g., Rabaul, Krakatau) and may have significant implications for new submarine eruption detection and volcanic stratigraphy.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Surveying Nearshore Bathymetry Using Multispectral and Hyperspectral Satellite Imagery and Machine Learning
    Hartmann, David
    Gravey, Mathieu
    Price, Timothy David
    Nijland, Wiebe
    de Jong, Steven Michael
    REMOTE SENSING, 2025, 17 (02)
  • [2] Multispectral satellite imagery and machine learning for the extraction of shoreline indicators
    McAllister, Emma
    Payo, Andres
    Novellino, Alessandro
    Dolphin, Tony
    Medina-Lopez, Encarni
    COASTAL ENGINEERING, 2022, 174
  • [3] Machine Learning for Cloud Cover Detection Using Multispectral Satellite Images
    Verma P.
    Patil S.
    Annals of Data Science, 2023, 10 (06) : 1543 - 1557
  • [4] Satellite jitter detection and compensation using multispectral imagery
    Wang, Mi
    Zhu, Ying
    Pan, Jun
    Yang, Bo
    Zhu, Quansheng
    REMOTE SENSING LETTERS, 2016, 7 (06) : S13 - S22
  • [5] Deep Learning Approach for Building Detection in Satellite Multispectral Imagery
    Prathap, Geesara
    Afanasyev, Ilya
    2018 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), 2018, : 461 - 465
  • [6] Useable Machine Learning for Sentinel-2 multispectral satellite imagery
    Langevin, Scott
    Bethune, Chris
    Horne, Philippe
    Kramer, Steve
    Gleason, Jeffrey
    Johnson, Ben
    Barnett, Ezekiel
    Husain, Fahd
    Bradley, Adam
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [7] Cloud Detection in High-Resolution Multispectral Satellite Imagery Using Deep Learning
    Morales, Giorgio
    Huaman, Samuel G.
    Telles, Joel
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 : 280 - 288
  • [8] Automatic Target Detection from Satellite Imagery Using Machine Learning
    Tahir, Arsalan
    Munawar, Hafiz Suliman
    Akram, Junaid
    Adil, Muhammad
    Ali, Shehryar
    Kouzani, Abbas Z.
    Mahmud, M. A. Pervez
    SENSORS, 2022, 22 (03)
  • [9] Flood Detection in Urban Areas Using Satellite Imagery and Machine Learning
    Tanim, Ahad Hasan
    McRae, Callum Blake
    Tavakol-Davani, Hassan
    Goharian, Erfan
    WATER, 2022, 14 (07)
  • [10] Agricultural Analysis and Crop Yield Prediction of Habiganj using Multispectral Bands of Satellite Imagery with Machine Learning
    Shahrin, Fariha
    Zahin, Labiba
    Rahman, Ramisa
    Hossain, A. S. M. Jahir
    Kaf, Abdulla Hil
    Azad, A. K. M. Abdul Malek
    PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2020, : 21 - 24