Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes

被引:306
|
作者
Fan, Zhihang [1 ,2 ]
Santare, Michael H. [1 ,2 ]
Advani, Suresh G. [1 ,2 ]
机构
[1] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA
[2] Univ Delaware, Ctr Composite Mat, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
preform; nano structures; interface/interphase; mechanical properties; capillary flow;
D O I
10.1016/j.compositesa.2007.11.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we examine the interlaminar shear strength (ILSS) of traditional glass fiber reinforced epoxy composites enhanced by strategically injecting multi-walled carbon nanotube (MWNT)-epoxy suspensions into stationary glass fiber mats. The suspensions were prepared by combining the techniques of high-speed mechanical stirring, ultrasonic agitation and acid oxidation. Two types of process designs were introduced to fabricate the hybrid MWNT/glass/epoxy composites and their relative merits were discussed. Short beam shear (SBS) and compression shear tests (CST) were conducted on the manufactured components to characterize the influence of the process and the weight percentage of nanotubes on the ILSS. The results show that the introduction of MWNT into the composite increased the ILSS by up to 33%. The preferential orientation of the MWNTs in the thickness direction was found to contribute to the increase in the interlaminar shear properties. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:540 / 554
页数:15
相关论文
共 50 条
  • [1] Combined effects of multi-walled carbon nanotubes and lignin on polymer fiber-reinforced epoxy composites
    Goulis, Panagiotis
    Kartsonakis, Ioannis A.
    Mpalias, Konstantinos
    Charitidis, Costas
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 218 : 18 - 27
  • [2] Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites
    Zhang, Jie
    Zhuang, Rongchuan
    Liu, Jianwen
    Maeder, Edith
    Heinrich, Gert
    Gao, Shanglin
    CARBON, 2010, 48 (08) : 2273 - 2281
  • [3] Tensile, flexural and interlaminar shear strength of carbon fiber reinforced epoxy composites modified by graphene
    Kumar, Amit
    Sharma, Kamal
    Dixit, Amit Rai
    POLYMER BULLETIN, 2023, 80 (07) : 7469 - 7490
  • [4] Tensile, flexural and interlaminar shear strength of carbon fiber reinforced epoxy composites modified by graphene
    Amit Kumar
    Kamal Sharma
    Amit Rai Dixit
    Polymer Bulletin, 2023, 80 : 7469 - 7490
  • [5] Influence of sprayed multi-walled carbon nanotubes on mode I and mode II interlaminar fracture toughness of carbon fiber/epoxy composites
    Rodriguez-Gonzalez, J. A.
    Rubio-Gonzalez, C.
    ADVANCED COMPOSITE MATERIALS, 2019, 28 (sup1) : 19 - 36
  • [6] Relationship Between Functionalized Multi-Walled Carbon Nanotubes and Damping Properties of Multi-Walled Carbon Nanotubes/Carbon Fiber-Reinforced Plastic Composites for Shaft
    Hong, Mi-Kyoung
    Choi, Woong-Ki
    Park, Jong-Hyun
    Kuk, Yun-Su
    Kim, Byoung-Suhk
    Seo, Min-Kang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (11) : 6862 - 6870
  • [7] Fabrication and Characterization of the Composites Reinforced with Multi-Walled Carbon Nanotubes
    Her, Shiuh-Chuan
    Yeh, Shun-Wen
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (10) : 8110 - 8115
  • [8] Multi-walled Carbon Nanotubes/Woven Kenaf Fabric-Reinforced Epoxy Laminated Composites
    Ismail, Nurul Hidayah
    Bin Mohamad, Mohd Hafizi
    Jaafar, Mariatti
    SAINS MALAYSIANA, 2018, 47 (03): : 563 - 569
  • [9] Reducing dispersity of mechanical properties of carbon fiber/epoxy composites by introducing multi-walled carbon nanotubes
    Zhang, Jianwei
    Ju, Su
    Jiang, Dazhi
    Peng, Hua-Xin
    COMPOSITES PART B-ENGINEERING, 2013, 54 : 371 - 376
  • [10] Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes
    Zhou, Yuanxin
    Pervin, Farhana
    Lewis, Lance
    Jeelani, Shaik
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 475 (1-2): : 157 - 165