Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy

被引:342
作者
Long, Jianyin [1 ]
Badal, Shawn S. [1 ]
Ye, Zengchun [1 ]
Wang, Yin [1 ]
Ayanga, Bernard A. [1 ]
Galvan, Daniel L. [1 ]
Green, Nathanael H. [1 ,2 ]
Chang, Benny H. [3 ]
Overbeek, Paul A. [3 ]
Danesh, Farhad R. [1 ,2 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Nephrol Sect, 1400 Pressler St,Unit 1468, Houston, TX 77030 USA
[2] Baylor Coll Med, Dept Pharmacol, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA
关键词
COACTIVATOR PGC-1-ALPHA; SKELETAL-MUSCLE; KIDNEY-DISEASE; EPIGENETIC REGULATION; RECEPTOR-COACTIVATOR; OXIDATIVE-METABOLISM; ENERGY-METABOLISM; GENE-EXPRESSION; MESSENGER-RNA; KNOCKOUT MICE;
D O I
10.1172/JCI87927
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The regulatory roles of long noncoding RNAs (IncRNAs) in transcriptional coactivators are still largely unknown. Here, we have shown that the peroxisome proliferator-activated receptor gamma (PPAR gamma) coactivator alpha (PGC-1 alpha, encoded by Ppargc1a) is functionally regulated by the IncRNA taurine-upregulated gene 1 (Tug1). Further, we have described a role for Tug1 in the regulation of mitochondria! function in podocytes. Using a murine model of diabetic nephropathy (DN), we performed an unbiased RNA-sequencing (RNA-seq) analysis of kidney glomeruli and identified Tug1 as a differentially expressed IncRNA in the diabetic milieu. Podocyte-specific overexpression (OE) of Tug1 in diabetic mice improved the biochemical and histological features associated with DN. Unexpectedly, we found that Tug1 OE rescued the expression of PGC-1a and its transcriptional targets. Tug1 OE was also associated with improvements in mitochondrial bioenergetics in the podocytes of diabetic mice. Mechanistically, we found that the interaction between Tugl and PGC-1 alpha promotes the binding of PGC-1 alpha to its own promoter. We identified a Tug1-binding element (TBE) upstream of the Ppargcla gene and showed that Tugl binds with the TBE to enhance Ppargcla promoter activity. These findings indicate that a direct interaction between PGC-1 alpha and Tugl modulates mitochondria! bioenergetics in podocytes in the diabetic milieu.
引用
收藏
页码:4205 / 4218
页数:14
相关论文
共 68 条
[1]   Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle [J].
Arany, Z ;
He, HM ;
Lin, JD ;
Hoyer, K ;
Handschin, C ;
Toka, O ;
Ahmad, F ;
Matsui, T ;
Chin, S ;
Wu, PH ;
Rybkin, II ;
Shelton, JM ;
Manieri, M ;
Cinti, S ;
Schoen, FJ ;
Bassel-Duby, R ;
Rosenzweig, A ;
Ingwall, JS ;
Spiegelman, BM .
CELL METABOLISM, 2005, 1 (04) :259-271
[2]   The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle [J].
Arany, Zoltan ;
Lebrasseur, Nathan ;
Morris, Carl ;
Smith, Eric ;
Yang, Wenli ;
Ma, Yanhong ;
Chin, Sherry ;
Spiegelman, Bruce M. .
CELL METABOLISM, 2007, 5 (01) :35-46
[3]   Dynamin-Related Protein 1 Deficiency Improves Mitochondrial Fitness and Protects against Progression of Diabetic Nephropathy [J].
Ayanga, Bernard A. ;
Badal, Shawn S. ;
Wang, Yin ;
Galvan, Daniel L. ;
Chang, Benny H. ;
Schumacker, Paul T. ;
Danesh, Farhad R. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2016, 27 (09) :2733-2747
[4]   Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution [J].
Briggs, James A. ;
Wolvetang, Ernst J. ;
Mattick, John S. ;
Rinn, John L. ;
Barry, Guy .
NEURON, 2015, 88 (05) :861-877
[5]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[6]   The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144 [J].
Cai, Heng ;
Xue, Yixue ;
Wang, Ping ;
Wang, Zhenhua ;
Li, Zhen ;
Hu, Yi ;
Li, Zhiqing ;
Shang, Xiuli ;
Liu, Yunhui .
ONCOTARGET, 2015, 6 (23) :19759-19779
[7]   MicroRNA-21 Promotes Fibrosis of the Kidney by Silencing Metabolic Pathways [J].
Chau, B. Nelson ;
Xin, Cuiyan ;
Hartner, Jochen ;
Ren, Shuyu ;
Castano, Ana P. ;
Linn, Geoffrey ;
Li, Jian ;
Tran, Phong T. ;
Kaimal, Vivek ;
Huang, Xinqiang ;
Chang, Aaron N. ;
Li, Shenyang ;
Kalra, Aarti ;
Grafals, Monica ;
Portilla, Didier ;
MacKenna, Deidre A. ;
Orkin, Stuart H. ;
Duffield, Jeremy S. .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (121)
[8]   Genomic Maps of Long Noncoding RNA Occupancy Reveal Principles of RNA-Chromatin Interactions [J].
Chu, Ci ;
Qu, Kun ;
Zhong, Franklin L. ;
Artandi, Steven E. ;
Chang, Howard Y. .
MOLECULAR CELL, 2011, 44 (04) :667-678
[9]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[10]   LincRNA-p21 Activates p21 In cis to Promote Polycomb Target Gene Expression and to Enforce the G1/S Checkpoint [J].
Dimitrova, Nadya ;
Zamudio, Jesse R. ;
Jong, Robyn M. ;
Soukup, Dylan ;
Resnick, Rebecca ;
Sarma, Kavitha ;
Ward, Amanda J. ;
Raj, Arjun ;
Lee, Jeannie T. ;
Sharp, Phillip A. ;
Jacks, Tyler .
MOLECULAR CELL, 2014, 54 (05) :777-790