Boundedness of the Riesz potential in central Morrey-Orlicz spaces

被引:3
作者
Burtseva, Evgeniya [1 ]
Maligranda, Lech [1 ,2 ]
Matsuoka, Katsuo [3 ]
机构
[1] Lulea Univ Technol, Dept Engn Sci & Math, SE-97187 Lulea, Sweden
[2] Poznan Univ Tech, Inst Math, Ul Piotrowo 3a, PL-60965 Poznan, Poland
[3] Nihon Univ, Coll Econ, Chiyoda Ku, 1-3-2 Misaki Cho, Tokyo 1018360, Japan
关键词
Riesz potential; Orlicz functions; Orlicz spaces; Morrey-Orlicz spaces; Central Morrey-Orlicz spaces; Weak central Morrey-Orlicz spaces; CLASSICAL OPERATORS; INTEGRAL-OPERATORS; HARDY-SPACES; INEQUALITIES;
D O I
10.1007/s11117-022-00879-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Boundedness of the maximal operator and the Calderon-Zygmund singular integral operators in central Morrey-Orlicz spaces were proved in papers (Maligranda et al. in Colloq Math 138:165-181, 2015; Maligranda et al. in Tohoku Math J 72:235-259, 2020) by the second and third authors. The weak-type estimates have also been proven. Here we show boundedness of the Riesz potential in central Morrey-Orlicz spaces and the corresponding weak-type version.
引用
收藏
页数:26
相关论文
共 42 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
Alvarez J., 2000, Collect. Math., V51, P1
[3]   Inequalities for the volume of the unit ball in Rn [J].
Alzer, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) :353-363
[4]  
[Anonymous], 1991, Theory of Orlicz Spaces
[5]  
[Anonymous], 1961, Convex functions and Orlicz spaces
[6]  
[Anonymous], 1986, Real-Variable Methods in Harmonic Analysis
[7]  
Burenkov VI, 2012, EURASIAN MATH J, V3, P11
[8]  
Burenkov VI, 2011, EURASIAN MATH J, V2, P52
[9]   Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces [J].
Burenkov, VI ;
Guliyev, HV .
STUDIA MATHEMATICA, 2004, 163 (02) :157-176
[10]   Boundedness of the Riesz Potential in Local Morrey-Type Spaces [J].
Burenkov, Victor I. ;
Gogatishvili, Amiran ;
Guliyev, Vagif S. ;
Mustafayev, Rza Ch .
POTENTIAL ANALYSIS, 2011, 35 (01) :67-87