Trapezoidal methods for fractional differential equations: Theoretical and computational aspects

被引:150
作者
Garrappa, Roberto [1 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
关键词
Fractional differential equations; Multistep methods; Trapezoidal method; Stability; Computational aspects; VOLTERRA INTEGRAL-EQUATIONS; DIFFUSION-EQUATIONS; STABILITY ANALYSIS; NUMERICAL-SOLUTION; 2ND KIND; CALCULUS; ORDER; APPROXIMATIONS; COLLOCATION; ALGORITHMS;
D O I
10.1016/j.matcom.2013.09.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper describes different approaches to generalize the trapezoidal method to fractional differential equations. We analyze the main theoretical properties and we discuss computational aspects to implement efficient algorithms. Numerical experiments are provided to illustrate potential and limitations of the different methods under investigation. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 112
页数:17
相关论文
共 54 条
[1]  
[Anonymous], 1991, J. Integral Equations Appl.
[2]  
[Anonymous], CISM COURSES LECT
[3]  
[Anonymous], 2013, 1335 OCCAM
[4]  
BRUNNER H, 1985, MATH COMPUT, V45, P417, DOI 10.1090/S0025-5718-1985-0804933-3
[5]   AN EFFICIENT IMPLICIT FEM SCHEME FOR FRACTIONAL-IN-SPACE REACTION-DIFFUSION EQUATIONS [J].
Burrage, Kevin ;
Hale, Nicholas ;
Kay, David .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) :A2145-A2172
[6]   Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rossler systems [J].
Cafagna, Donato ;
Grassi, Giuseppe .
NONLINEAR DYNAMICS, 2012, 68 (1-2) :117-128
[7]   THE ANALYSIS OF PRODUCT INTEGRATION METHODS FOR ABELS-EQUATION USING DISCRETE FRACTIONAL DIFFERENTIATION [J].
CAMERON, RF ;
MCKEE, S .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (03) :339-353
[8]   Analysis and shaping of the self-sustained oscillations in relay controlled fractional-order systems [J].
Caponetto, Riccardo ;
Maione, Guido ;
Pisano, Alessandro ;
Rapaic, Milan R. ;
Usai, Elio .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) :93-108
[9]   Fast collocation methods for Volterra integral equations of convolution type [J].
Conte, Dajana ;
Del Prete, Ida .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) :652-663
[10]   HIGH-ORDER METHODS FOR A CLASS OF VOLTERRA INTEGRAL-EQUATIONS WITH WEAKLY SINGULAR KERNELS [J].
DE HOOG, F ;
WEISS, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (06) :1166-1180