Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems

被引:43
作者
Qian, Zhenyun [1 ]
Liu, Fangze [2 ]
Hui, Yu [1 ]
Kar, Swastik [2 ]
Rinaldi, Matteo [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
关键词
Graphene; massless electrode; NEMS; aluminum nitride; piezoelectric;
D O I
10.1021/acs.nanolett.5b01208
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designing "ideal electrodes" that simultaneously guarantee low mechanical damping and electrical loss as well as high electromechanical coupling in ultralow-volume piezoelectric nanomechanical structures can be considered to be a key challenge in the NEMS field. We show that mechanically transferred graphene, floating at van der Waals proximity, closely mimics "ideal electrodes" for ultrahigh frequency (0.2 GHz < f(0) < 2.6 GHz) piezoelectric nanoelectromechanical resonators with negligible mechanical mass and interfacial strain and perfect radio frequency electric field confinement. These unique attributes enable graphene-electrode-based piezoelectric nanoelectromechanical resonators to operate at their theoretically "unloaded" frequency-limits with significantly improved electromechanical performance compared to metal-electrode counterparts, despite their reduced volumes. This represents a spectacular trend inversion in the scaling of piezoelectric electromechanical resonators, opening up new possibilities for the implementation of nanoelectromechanical systems with unprecedented performance.
引用
收藏
页码:4599 / 4604
页数:6
相关论文
共 32 条
[1]   Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene [J].
Aitken, Zachary H. ;
Huang, Rui .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (12)
[2]   Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications [J].
An, Xiaohong ;
Simmons, Trevor John ;
Shah, Rakesh ;
Wolfe, Christopher ;
Lewis, Kim M. ;
Washington, Morris ;
Nayak, Saroj K. ;
Talapatra, Saikat ;
Kar, Swastik .
NANO LETTERS, 2010, 10 (11) :4295-4301
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]  
Chen CY, 2013, NAT NANOTECHNOL, V8, P923, DOI [10.1038/nnano.2013.232, 10.1038/NNANO.2013.232]
[5]   Nanoelectromechanical systems [J].
Craighead, HG .
SCIENCE, 2000, 290 (5496) :1532-1535
[6]   NANOELECTROMECHANICAL SYSTEMS Tuning in to a graphene oscillator [J].
Feng, Philip X. -L. .
NATURE NANOTECHNOLOGY, 2013, 8 (12) :897-898
[7]   High Resolution Magnetometer Based on a High Frequency Magnetoelectric MEMS-CMOS Oscillator [J].
Hui, Yu ;
Nan, Tianxiang ;
Sun, Nian X. ;
Rinaldi, Matteo .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2015, 24 (01) :134-143
[8]   Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element [J].
Hui, Yu ;
Rinaldi, Matteo .
APPLIED PHYSICS LETTERS, 2013, 102 (09)
[9]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710
[10]  
Konstantatos G, 2012, NAT NANOTECHNOL, V7, P363, DOI [10.1038/nnano.2012.60, 10.1038/NNANO.2012.60]