KIRCHHOFF'S THEOREMS IN HIGHER DIMENSIONS AND REIDEMEISTER TORSION

被引:11
作者
Catanzaro, Michael J. [1 ]
Chernyak, Vladimir Y. [2 ]
Klein, John R. [1 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
spanning tree; CW complex; Reidemeister torsion; combinatorial Laplacian; Kirchhoff's formulae; COMPLEXES; PROOF;
D O I
10.4310/HHA.2015.v17.n1.a8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using, ideas from algebraic topology and statistical mechanics, we generalize Kirchhoff's network and matrix-tree theorems to finite CW complexes of arbitrary dimension. As an application, we give a formula expressing Reidemeister torsion as an enumeration of higher dimensional spanning trees.
引用
收藏
页码:165 / 189
页数:25
相关论文
共 21 条
[1]  
[Anonymous], 1998, GRADUATE TEXTS MATH
[2]  
[Anonymous], 1970, CANADIAN MATH MONOGR
[3]  
[Anonymous], 1923, REV MATEMATICA HISPA
[4]  
[Anonymous], 1958, IRE T CIRCUIT THEORY
[5]   A COMBINATORIAL PROOF OF THE ALL MINORS MATRIX TREE THEOREM [J].
CHAIKEN, S .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (03) :319-329
[6]   Quantization and fractional quantization of currents in periodically driven stochastic systems. II. Full counting statistics [J].
Chernyak, Vladimir Y. ;
Klein, John R. ;
Sinitsyn, Nikolai A. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (15)
[7]   Quantization and fractional quantization of currents in periodically driven stochastic systems. I. Average currents [J].
Chernyak, Vladimir Y. ;
Klein, John R. ;
Sinitsyn, Nikolai A. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (15)
[8]  
Chernyak VladimirY., 2013, Advances in Mathematics, V244, P791
[9]  
Duval A. M., J ALGEBRAIC IN PRESS
[10]   Cellular spanning trees and Laplacians of cubical complexes [J].
Duval, Art M. ;
Klivans, Caroline J. ;
Martin, Jeremy L. .
ADVANCES IN APPLIED MATHEMATICS, 2011, 46 (1-4) :247-274