Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective

被引:8
作者
Bleve, Augusto [1 ]
Consonni, Francesca Maria [2 ]
Porta, Chiara [2 ,3 ]
Garlatti, Valentina [2 ]
Sica, Antonio [1 ,2 ]
机构
[1] Humanitas Clin & Res Ctr IRCCS, I-20089 Rozzano, Italy
[2] Univ Piemonte Orientale Amedeo Avogadro, Dept Pharmaceut Sci, I-28100 Novara, Italy
[3] Univ Piemonte Orientale Amedeo Avogadro, Ctr Translat Res Autoimmune & Allerg Dis CAAD, I-28100 Novara, Italy
关键词
innate immunity; tumor-associated myeloid cells; tumor-associated macrophages (TAMs); myeloid-derived suppressor cells (MDSCs); tumor microenvironment; cancer immunotherapy; TUMOR-ASSOCIATED MACROPHAGES; TRANS-RETINOIC ACID; HEMATOPOIETIC STEM-CELLS; NECK-CANCER; MICROENVIRONMENTAL REGULATION; MONOCLONAL-ANTIBODY; THERAPEUTIC TARGET; ANTITUMOR-ACTIVITY; IMMUNE-RESPONSE; OPEN-LABEL;
D O I
10.3390/cancers14030510
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Immunotherapy is achieving impressive results in the treatment of several cancers. While the main strategies aim to re-invigorate the specific lymphocyte anti-tumor response, many studies underline that altered myeloid cell frequency and functions can dramatically interfere with the responsiveness to cancer therapies. Therefore, many novel strategies targeting TAMs and MDSCs in combination with classical treatments are under continuous evolution at both pre-clinical and clinical levels, showing encouraging results. Herein, we depict a comprehensive overview of myeloid cell generation and function in a cancer setting, and the most relevant strategies for their targeting that are currently in clinical use or under pre-clinical development. In recent years, the immune system has emerged as a critical regulator of tumor development, progression and dissemination. Advanced therapeutic approaches targeting immune cells are currently under clinical use and improvement for the treatment of patients affected by advanced malignancies. Among these, anti-PD1/PD-L1 and anti-CTLA4 immune checkpoint inhibitors (ICIs) are the most effective immunotherapeutic drugs at present. In spite of these advances, great variability in responses to therapy exists among patients, probably due to the heterogeneity of both cancer cells and immune responses, which manifest in diverse forms in the tumor microenvironment (TME). The variability of the immune profile within TME and its prognostic significance largely depend on the frequency of the infiltrating myeloid cells, which often represent the predominant population, characterized by high phenotypic heterogeneity. The generation of heterogeneous myeloid populations endowed with tumor-promoting activities is typically promoted by growing tumors, indicating the sequential levels of myeloid reprogramming as possible antitumor targets. This work reviews the current knowledge on the events governing protumoral myelopoiesis, analyzing the mechanisms that drive the expansion of major myeloid subsets, as well as their functional properties, and highlighting recent translational strategies for clinical developments.
引用
收藏
页数:40
相关论文
共 228 条
[1]   Evidence that a lipolytic enzyme-hematopoietic-specific phospholipase C-β2-promotes mobilization of hematopoietic stem cells by decreasing their lipid raft-mediated bone marrow retention and increasing the promobilizing effects of granulocytes [J].
Adamiak, M. ;
Poniewierska-Baran, A. ;
Borkowska, S. ;
Schneider, G. ;
Abdelbaset-Ismail, A. ;
Suszynska, M. ;
Abdel-Latif, A. ;
Kucia, M. ;
Ratajczak, J. ;
Ratajczak, M. Z. .
LEUKEMIA, 2016, 30 (04) :919-928
[2]   Topical TLR7 Agonist Imiquimod Can Induce Immune-Mediated Rejection of Skin Metastases in Patients with Breast Cancer [J].
Adams, Sylvia ;
Kozhaya, Lina ;
Martiniuk, Frank ;
Meng, Tze-Chiang ;
Chiriboga, Luis ;
Liebes, Leonard ;
Hochman, Tsivia ;
Shuman, Nicholas ;
Axelrod, Deborah ;
Speyer, James ;
Novik, Yelena ;
Tiersten, Amy ;
Goldberg, Judith D. ;
Formenti, Silvia C. ;
Bhardwaj, Nina ;
Unutmaz, Derya ;
Demaria, Sandra .
CLINICAL CANCER RESEARCH, 2012, 18 (24) :6748-6757
[3]   CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma [J].
Advani, Ranjana ;
Flinn, Ian ;
Popplewell, Leslie ;
Forero, Andres ;
Bartlett, Nancy L. ;
Ghosh, Nilanjan ;
Kline, Justin ;
Roschewski, Mark ;
LaCasce, Ann ;
Collins, Graham P. ;
Thu Tran ;
Lynn, Judith ;
Chen, James Y. ;
Volkmer, Jens-Peter ;
Agoram, Balaji ;
Huang, Jie ;
Majeti, Ravindra ;
Weissman, Irving L. ;
Takimoto, Chris H. ;
Chao, Mark P. ;
Smith, Sonali M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (18) :1711-1721
[4]   Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells [J].
Al-Khami, Amir A. ;
Zheng, Liqin ;
Del Valle, Luis ;
Hossain, Fokhrul ;
Wyczechowska, Dorota ;
Zabaleta, Jovanny ;
Sanchez, Maria D. ;
Dean, Matthew J. ;
Rodriguez, Paulo C. ;
Ochoa, Augusto C. .
ONCOIMMUNOLOGY, 2017, 6 (10)
[5]   Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice [J].
Albrengues, Jean ;
Shields, Mario A. ;
Ng, David ;
Park, Chun Gwon ;
Ambrico, Alexandra ;
Poindexter, Morgan E. ;
Upadhyay, Priya ;
Uyeminami, Dale L. ;
Pommier, Arnaud ;
Kuttner, Victoria ;
Bruzas, Emilis ;
Maiorino, Laura ;
Bautista, Carmelita ;
Carmona, Ellese M. ;
Gimotty, Phyllis A. ;
Fearon, Douglas T. ;
Chang, Kenneth ;
Lyons, Scott K. ;
Pinkerton, Kent E. ;
Trotman, Lloyd C. ;
Goldberg, Michael S. ;
Yeh, Johannes T. -H. ;
Egeblad, Mikala .
SCIENCE, 2018, 361 (6409) :1353-+
[6]   The CCL5/CCR5 Axis in Cancer Progression [J].
Aldinucci, Donatella ;
Borghese, Cinzia ;
Casagrande, Naike .
CANCERS, 2020, 12 (07) :1-30
[7]   Interleukin-8 in cancer pathogenesis, treatment and follow-up [J].
Alfaro, Carlos ;
Sanmamed, Miguel F. ;
Rodriguez-Ruiz, Maria E. ;
Teijeira, Alvaro ;
Onate, Carmen ;
Gonzalez, Alvaro ;
Ponz, Mariano ;
Schalper, Kurt A. ;
Perez-Gracia, Jose L. ;
Melero, Ignacio .
CANCER TREATMENT REVIEWS, 2017, 60 :24-31
[8]   Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics [J].
Alshetaiwi, Hamad ;
Pervolarakis, Nicholas ;
McIntyre, Laura Lynn ;
Ma, Dennis ;
Quy Nguyen ;
Rath, Jan Akara ;
Nee, Kevin ;
Hernandez, Grace ;
Evans, Katrina ;
Torosian, Leona ;
Silva, Anushka ;
Walsh, Craig ;
Kessenbrock, Kai .
SCIENCE IMMUNOLOGY, 2020, 5 (44)
[9]   Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors [J].
Argyle, David ;
Kitamura, Takanori .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[10]   Transcriptional and metabolic reprogramming induce an inflammatory phenotype in non-medullary thyroid carcinoma-induced macrophages [J].
Arts, Rob J. W. ;
Plantinga, Theo S. ;
Tuit, Sander ;
Ulas, Thomas ;
Heinhuis, Bas ;
Tesselaar, Marika ;
Sloot, Yvette ;
Adema, Gosse J. ;
Joosten, Leo A. B. ;
Smit, Johannes W. A. ;
Netea, Mihai G. ;
Schultze, Joachim L. ;
Netea-Maier, Romana T. .
ONCOIMMUNOLOGY, 2016, 5 (12)