Nonlinear parabolic problems with Neumann-type boundary conditions and L1-data

被引:0
作者
El Hachimi, Abderrahmane [1 ]
Jamea, Ahmed [1 ]
机构
[1] UFR Math Appl & Ind, Fac Sci, El Jadida, Morocco
关键词
entropy solution; nonlinear parabolic problem; Neumann-type boundary conditions; P-Laplacian; semi-discretization;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study existence, uniqueness and stability questions for the nonlinear parabolic equation: partial derivative u/partial derivative t - Delta(p)u + alpha(u) = f in]0, T[x Omega, with Neumann-type boundary conditions and initial data in L-1. Our approach is based essentially on the time discretization technique by Euler forward scheme.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 27 条
[1]  
ANDEREU F, 1997, ADV MATH SCI APPL, V7, P183
[2]   Existence and uniqueness for a degenerate parabolic equation with L1-data [J].
Andreu, F ;
Mazón, JM ;
De León, SS ;
Toledo, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) :285-306
[3]  
ANDREU F, IN PRESS ANN I POINC
[4]  
Benilan P., 1995, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V22, P241
[5]  
BENZEKRI F, 2002, EJDE, P1
[6]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[7]   Approximated solutions of equations with L-1 data. Application to the H-convergence of quasi-linear parabolic equations. [J].
DallAglio, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 170 :207-240
[8]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[9]   SEMI-DISCRETIZED NONLINEAR EVOLUTION-EQUATIONS AS DISCRETE DYNAMIC-SYSTEMS AND ERROR ANALYSIS [J].
EDEN, A ;
MICHAUX, B ;
RAKOTOSON, JM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (03) :737-783
[10]  
ELHACHIMI A, 2002, ELECT J DIFFERENTIAL, P1