Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices

被引:48
作者
Isaza, P [1 ]
Mejía, J [1 ]
机构
[1] Univ Nacl Colombia, Dept Math, Medellin, Colombia
关键词
D O I
10.1081/PDE-100002387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the Cauchy problem for the Kadomtsev-Petviashvili II (KPII) equation is locally well posed in the anisotropic Sobolev spaces H-s1s2 (R-2) with s(1) > -(1)/(3) and s(2) greater than or equal to 0, and globally well posed in H-s10 (R-2) With S-1 > -(1)/(64).
引用
收藏
页码:1027 / 1054
页数:28
相关论文
共 11 条
[1]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[2]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[3]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[4]  
Ginibre J, 1996, ASTERISQUE, P163
[5]  
ISAZA P, IN PRESS DIFF INT EQ
[6]   THE CAUCHY-PROBLEM FOR THE KORTEWEG-DEVRIES EQUATION IN SOBOLEV SPACES OF NEGATIVE INDEXES [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) :1-21
[7]   A bilinear estimate with applications to the KdV equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :573-603
[8]  
TAKAOKA H, 1999, LOCAL REGULARITY KAD
[9]  
TAKAOKA H, 1998, WELL POSEDNESS KADOM
[10]   On the Cauchy problem for Kadomtsev-Petviashvili equation [J].
Tzvetkov, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1367-1397