Isomorphisms among quantum Grothendieck rings and propagation of positivity

被引:7
|
作者
Fujita, Ryo [1 ,2 ]
Hernandez, David [3 ,4 ]
Oh, Se-jin [5 ]
Oya, Hironori [6 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Sakyo Ku, Kyoto 6068502, Japan
[2] Univ Paris, Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, France
[3] Univ Paris, F-75006 Paris, France
[4] Sorbonne Univ, CNRS, IMJ PRG, IUF, F-75006 Paris, France
[5] Ewha Womans Univ Seoul, 52 Ewhayeodae Gil, Seoul, South Korea
[6] Shibaura Inst Technol, Dept Math Sci, Minuma Ku, 307 Fukasaku, Saitama, Saitama 3378570, Japan
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2022年 / 2022卷 / 785期
基金
新加坡国家研究基金会; 欧洲研究理事会;
关键词
FINITE-DIMENSIONAL REPRESENTATIONS; QUIVER HECKE ALGEBRAS; AUSLANDER-REITEN QUIVERS; AFFINE ALGEBRAS; R-MATRICES; MINIMAL AFFINIZATIONS; Q-CHARACTERS; MONOIDAL CATEGORIES; CLUSTER ALGEBRAS; VARIETIES;
D O I
10.1515/crelle-2021-0088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (g, g) be a pair of complex finite-dimensional simple Lie algebras whose Dynkin diagrams are related by (un)folding, with g being of simply-laced type. We construct a collection of ring isomorphisms between the quantum Grothendieck rings of monoidal categories C-g and C-g of finite-dimensional representations over the quantum loop algebras of g and g, respectively. As a consequence, we solve long-standing problems: the positivity of the analogs of Kazhdan-Lusztig polynomials and the positivity of the structure constants of the quantum Grothendieck rings for any non-simply-laced g. In addition, comparing our isomorphisms with the categorical relations arising from the generalized quantum affine Schur-Weyl dualities, we prove the analog of Kazhdan-Lusztig conjecture (formulated in [D. Hernandez, Algebraic approach to q, t-characters, Adv. Math. 187 (2004), no. 1, 1-52]) for simple modules in remarkable monoidal subcategories of C-g for any non-simply-laced g, and for any simple finite-dimensional modules in C-g for g of type B-n. In the course of the proof we obtain and combine several new ingredients. In particular, we establish a quantum analog of T-systems, and also we generalize the isomorphisms of [D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. reine angew. Math. 701 (2015), 77-126, D. Hernandez and H. Oya, Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan-Lusztig algorithm, Adv. Math. 347 (2019), 192-272] to all g in a unified way, that is, isomorphisms between subalgebras of the quantum group of g and subalgebras of the quantum Grothendieck ring of C-g.
引用
收藏
页码:117 / 185
页数:69
相关论文
共 10 条