Multi-faceted Distillation of Base-Novel Commonality for Few-Shot Object Detection

被引:24
|
作者
Wu, Shuang [2 ]
Pei, Wenjie [2 ]
Mei, Dianwen [2 ]
Chen, Fanglin [2 ]
Tian, Jiandong [3 ]
Lu, Guangming [1 ,2 ]
机构
[1] Guangdong Prov Key Lab Novel Secur Intelligence T, Shenzhen, Peoples R China
[2] Harbin Inst Technol, Shenzhen, Peoples R China
[3] Chinese Acad Sci, Shenyang Inst Automat, Shenyang, Peoples R China
来源
COMPUTER VISION, ECCV 2022, PT IX | 2022年 / 13669卷
关键词
Few-shot; Object detection; Knowledge distillation; Commonality;
D O I
10.1007/978-3-031-20077-9_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most of existing methods for few-shot object detection follow the fine-tuning paradigm, which potentially assumes that the classagnostic generalizable knowledge can be learned and transferred implicitly from base classes with abundant samples to novel classes with limited samples via such a two-stage training strategy. However, it is not necessarily true since the object detector can hardly distinguish between classagnostic knowledge and class-specific knowledge automatically without explicit modeling. In this work we propose to learn three types of class-agnostic commonalities between base and novel classes explicitly: recognition-related semantic commonalities, localization-related semantic commonalities and distribution commonalities. We design a unified distillation framework based on a memory bank, which is able to perform distillation of all three types of commonalities jointly and efficiently. Extensive experiments demonstrate that our method can be readily integrated into most of existing fine-tuning based methods and consistently improve the performance by a large margin.
引用
收藏
页码:578 / 594
页数:17
相关论文
共 50 条
  • [21] Few-shot object detection: Research advances and challenges
    Xin, Zhimeng
    Chen, Shiming
    Wu, Tianxu
    Shao, Yuanjie
    Ding, Weiping
    You, Xinge
    INFORMATION FUSION, 2024, 107
  • [22] Temporal Speciation Network for Few-Shot Object Detection
    Zhao, Xiaowei
    Liu, Xianglong
    Ma, Yuqing
    Bai, Shihao
    Shen, Yifan
    Hao, Zeyu
    Liu, Aishan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8267 - 8278
  • [23] Few-Shot Object Detection via Metric Learning
    Zhu Min
    Zhang Chongyang
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [24] Few-Shot Object Detection on Remote Sensing Images
    Li, Xiang
    Deng, Jingyu
    Fang, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] Mixed Supervision for Instance Learning in Object Detection with Few-shot Annotation
    Zhong, Yi
    Wang, Chengyao
    Li, Shiyong
    Zhou, Zhu
    Wang, Yaowei
    Zheng, Wei-Shi
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022,
  • [26] Few-Shot Object Detection using Global Attention and Support Attention
    Yang, Chongzhi
    Yu, Linfang
    Xiao, Peng
    Wang, Bintao
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1446 - 1450
  • [27] Extreme R-CNN: Few-Shot Object Detection via Sample Synthesis and Knowledge Distillation
    Zhang, Shenyong
    Wang, Wenmin
    Wang, Zhibing
    Li, Honglei
    Li, Ruochen
    Zhang, Shixiong
    SENSORS, 2024, 24 (23)
  • [28] Enhancing Few-Shot Learning in Lightweight Models via Dual-Faceted Knowledge Distillation
    Zhou, Bojun
    Cheng, Tianyu
    Zhao, Jiahao
    Yan, Chunkai
    Jiang, Ling
    Zhang, Xinsong
    Gu, Juping
    SENSORS, 2024, 24 (06)
  • [29] Multi-Modal Prototypes for Few-Shot Object Detection in Remote Sensing Images
    Liu, Yanxing
    Pan, Zongxu
    Yang, Jianwei
    Zhou, Peiling
    Zhang, Bingchen
    REMOTE SENSING, 2024, 16 (24)
  • [30] Dual-Awareness Attention for Few-Shot Object Detection
    Chen, Tung-, I
    Liu, Yueh-Cheng
    Su, Hung-Ting
    Chang, Yu-Cheng
    Lin, Yu-Hsiang
    Yeh, Jia-Fong
    Chen, Wen-Chin
    Hsu, Winston H.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 291 - 301