Forecasting and analysis of marketing data using neural networks

被引:0
|
作者
Yao, JT [1 ]
Teng, N [1 ]
Poh, HL [1 ]
Tan, CL [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 119260, Singapore
关键词
artificial neural networks; marketing decision support systems; sales forecasting; marketing mix; variable reduction;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study aims to incorporate Artificial Neural Networks into a Marketing Decision Support System (MDSS), specifically, by discovering important variables that influence sales performance of colour television (CTV) sets in the Singapore market using neural networks. Three kinds of variables, expert knowledge, marketing information and environmental data, are examined. The information about the effects of each of these variables has been studied and made available for decision making. However, their combined effect is unknown. This study attempts to explore the combined effect for the benefit of our collaborator, a multinational corporation (MNC) in the consumer electronics industry in Singapore. Putting these three variables together as input variables results in a neural network model. Neural network training is conducted using historical data on CTV sales in Singapore collected over the past one and a half years. Sensitivity analysis is then performed to reduce input variables of neural networks. This is done by analyzing the weights of the input node connections in the trained neural networks using two different methods. The weaker variables can be excluded, and this results in a simpler model. Further, an R-Square value of almost 1 is obtained through the inclusion of an Unknown variable when the network model consisting only of the most influential variables is trained and tested. Knowing the most influential variables, which in this case include Average Price, Screen Size, Stereo Systems, Flat-Square screen type and Seasonal Factors, marketing managers can improve sales performance by paying more attention to them.
引用
收藏
页码:843 / 862
页数:20
相关论文
共 50 条
  • [21] Fuzzy neural networks with application to sales forecasting
    Kuo, RJ
    Xue, KC
    FUZZY SETS AND SYSTEMS, 1999, 108 (02) : 123 - 143
  • [22] TURNING ARTIFICIAL NEURAL NETWORKS INTO A MARKETING SCIENCE TOOL Modelling and Forecasting the Impact of Sales Promotions
    Qureshi, Ibrahim Zafar
    Khammash, Marwan
    Nikolopoulos, Konstantinos
    ICAART 2011: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2011, : 698 - 702
  • [23] Modeling and Forecasting Cases of RSV Using Artificial Neural Networks
    Cogollo, Myladis R.
    Gonzalez-Parra, Gilberto
    Arenas, Abraham J.
    MATHEMATICS, 2021, 9 (22)
  • [24] Sky Temperature Forecasting in Djibouti: An Integrated Approach Using Measured Climate Data and Artificial Neural Networks
    Abdi, Hamda
    Idris, Abdou
    Le, Anh Dung Tran
    ENERGIES, 2024, 17 (22)
  • [25] Energy Consumption Forecasting of Iran Using Recurrent Neural Networks
    Avami, A.
    Boroushaki, M.
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2011, 6 (04) : 339 - 347
  • [26] Mobile Network Traffic Forecasting Using Artificial Neural Networks
    Kirmaz, Anil
    Michalopoulos, Diomidis S.
    Balan, Irina
    Gerstacker, Wolfgang
    2020 IEEE 28TH INTERNATIONAL SYMPOSIUM ON MODELING, ANALYSIS, AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (MASCOTS 2020), 2020, : 70 - +
  • [27] Forecasting Indian Stock Market Using Artificial Neural Networks
    Kale, Ashutosh
    Khanvilkar, Omkaar
    Jivani, Hardik
    Kumkar, Prathamesh
    Madan, Ishan
    Sarode, Tanuja
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [28] Short term streamflow forecasting using artificial neural networks
    Zealand, CM
    Burn, DH
    Simonovic, SP
    JOURNAL OF HYDROLOGY, 1999, 214 (1-4) : 32 - 48
  • [29] Medium Term Forecasting of Rainfall using Artificial Neural Networks
    Iseri, Y.
    Dandy, G. C.
    Maier, H. R.
    Kawamura, A.
    Jinno, K.
    MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 1834 - 1840
  • [30] Informed Neural Networks for Flood Forecasting With Limited Amount of Training Data
    Komiya, K.
    Kiyotake, H.
    Nakada, R.
    Fujishima, M.
    Mori, K.
    WATER RESOURCES RESEARCH, 2025, 61 (03)